結果
| 問題 | 
                            No.1521 Playing Musical Chairs Alone
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2021-05-05 01:15:20 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 402 ms / 2,000 ms | 
| コード長 | 2,581 bytes | 
| コンパイル時間 | 234 ms | 
| コンパイル使用メモリ | 82,116 KB | 
| 実行使用メモリ | 76,704 KB | 
| 最終ジャッジ日時 | 2024-10-05 03:04:30 | 
| 合計ジャッジ時間 | 5,671 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge4 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 23 | 
ソースコード
mod = 10 ** 9 + 7
#行列ライブラリ
class Matrix:
    def __init__(self, n, m, mat=None):
        self.n = n
        self.m = m
        self.mat = [[0] * self.m for i in range(self.n)]
        if mat:
            for i in range(self.n):
                self.mat[i] = mat[i]
    
    def __getitem__(self, key):
        if isinstance(key, slice):
            return self.mat[key]
        else:
            assert key >= 0
            return self.mat[key]
    def id(n):
        res = Matrix(n, n)
        for i in range(n):
            res[i][i] = 1
        return res
    def __len__(self):
        return len(self.mat)
    
    def __str__(self):
        return "\n".join(" ".join(map(str, self[i])) for i in range(self.n))
    def times(self, k):
        res = [[0] * self.m for i in range(self.n)]
        for i in range(self.n):
            for j in range(self.m):
                res[i][j] = k * self[i][j] % mod
        return Matrix(self.n, self.m, res)
    def __pos__(self):
        return self
    def __neg__(self):
        return self.times(-1)
    def __add__(self, other):
        res = [[0] * self.m for i in range(self.n)]
        for i in range(self.n):
            for j in range(self.m):
                res[i][j] = (self[i][j] + other[i][j]) % mod
        return Matrix(self.n, self.m, res)
    
    def __sub__(self, other):
        res = [[0] * self.m for i in range(self.n)]
        for i in range(self.n):
            for j in range(self.m):
                res[i][j] = (self[i][j] - other[i][j]) % mod
        return Matrix(self.n, self.m, res)
    def __mul__(self, other):
        if other.__class__ == Matrix:
            res = [[0] * other.m for i in range(self.n)]
            for i in range(self.n):
                for k in range(self.m):
                    for j in range(other.m):
                        res[i][j] += self[i][k] * other[k][j]
                        res[i][j] %= mod
            return Matrix(self.n, other.m, res)
        else:
            return self.times(other)
    
    def __rmul__(self, other):
        return self.times(other)
    def __pow__(self, k):
        tmp = Matrix(self.n, self.n, self.mat)
        res = Matrix.id(self.n)
        while k:
            if k & 1:
                res *= tmp
            tmp *= tmp
            k >>= 1
        return res
#入力
n, k, l = map(int, input().split())
#隣接行列の構築
G = [[0] * n for i in range(n)]
for i in range(n):
    for j in range(1, l + 1):
        G[i][(i + j) % n] = 1
G = Matrix(n, n, G)
G **= k
for i in range(n):
    print(G[0][i])