結果
| 問題 |
No.8 N言っちゃダメゲーム
|
| ユーザー |
Fukucchi
|
| 提出日時 | 2021-05-05 12:13:13 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,230 ms / 5,000 ms |
| コード長 | 11,382 bytes |
| コンパイル時間 | 1,745 ms |
| コンパイル使用メモリ | 135,792 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-09-13 03:59:43 |
| 合計ジャッジ時間 | 6,492 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 11 |
ソースコード
#pragma GCC optimize("O3") //コンパイラ最適化用
//#define _GLIBCXX_DEBUG //配列に[]でアクセス時のエラー表示
/* #region */
#define _USE_MATH_DEFINES
#include <algorithm> //sort,二分探索,など
#include <bitset> //固定長bit集合
// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
#include <cassert> //assert(p)で,not pのときにエラー
#include <cctype>
#include <chrono> //実行時間計測
#include <climits>
#include <cmath> //pow,logなど
#include <complex> //複素数
#include <cstdio>
#include <cstring>
#include <deque>
#include <functional> //sortのgreater
#include <iomanip> //setprecision(浮動小数点の出力の誤差)
#include <ios> // std::left, std::right
#include <iostream> //入出力
#include <iterator> //集合演算(積集合,和集合,差集合など)
#include <map>
#include <numeric> //iota(整数列の生成),gcdとlcm,accumulate
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility> //pair
#include <vector>
using namespace std;
typedef long long LL;
typedef long double LD;
#define ALL(x) x.begin(), x.end()
const long long INF = numeric_limits<long long>::max() / 4;
const int MOD = 1e9 + 7;
// const int MOD=998244353;
//略記
#define FF first
#define SS second
#define int long long
#define stoi stoll
#define LD long double
#define PII pair<int, int>
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define SZ(x) (int)((x).size())
#define VB vector<bool>
#define VVB vector<vector<bool>>
#define VI vector<int>
#define VVI vector<vector<int>>
#define REP(i, n) for (int i = 0; i < (int)(n); i++)
#define REPD(i, n) for (int i = (int)(n) - (int)1; i >= 0; i--)
#define FOR(i, a, b) for (int i = a; i < (int)(b); i++)
#define FORD(i, a, b) for (int i = (int)(b) - (int)1; i >= (int)a; i--)
const int dx[4] = {0, 1, 0, -1}, dy[4] = {-1, 0, 1, 0};
const int Dx[8] = {0, 1, 1, 1, 0, -1, -1, -1},
Dy[8] = {-1, -1, 0, 1, 1, 1, 0, -1};
int in() {
int x;
cin >> x;
return x;
}
// https://qiita.com/Lily0727K/items/06cb1d6da8a436369eed#c%E3%81%A7%E3%81%AE%E5%AE%9F%E8%A3%85
void print() { cout << "\n"; }
template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {
cout << head;
if (sizeof...(tail) != 0)
cout << " ";
print(forward<Tail>(tail)...);
}
template <class T> void print(vector<T> &vec) {
for (auto &a : vec) {
cout << a;
if (&a != &vec.back())
cout << " ";
}
cout << "\n";
}
template <class T> void print(set<T> &set) {
for (auto &a : set) {
cout << a << " ";
}
cout << "\n";
}
template <class T> void print(vector<vector<T>> &df) {
for (auto &vec : df) {
print(vec);
}
}
long long power(long long x, long long n) {
// O(logn)
// https://algo-logic.info/calc-pow/#toc_id_1_2
long long ret = 1;
while (n > 0) {
if (n & 1)
ret *= x; // n の最下位bitが 1 ならば x^(2^i) をかける
x *= x;
n >>= 1; // n を1bit 左にずらす
}
return ret;
}
// @brief nCr. O(r log n)。あるいは前処理 O(n), 本処理 O(1)で求められる modint
// の bc を検討。
int comb(int n, int r) {
// https://www.geeksforgeeks.org/program-to-calculate-the-value-of-ncr-efficiently/
// p holds the value of n*(n-1)*(n-2)...,
// k holds the value of r*(r-1)...
long long p = 1, k = 1;
// C(n, r) == C(n, n-r),
// choosing the smaller value
if (n - r < r)
r = n - r;
if (r != 0) {
while (r) {
p *= n;
k *= r;
// gcd of p, k
long long m = __gcd(p, k);
// dividing by gcd, to simplify
// product division by their gcd
// saves from the overflow
p /= m;
k /= m;
n--;
r--;
}
// k should be simplified to 1
// as C(n, r) is a natural number
// (denominator should be 1 ) .
}
else
p = 1;
// if our approach is correct p = ans and k =1
return p;
}
// MOD
void add(long long &a, long long b) {
a += b;
if (a >= MOD)
a -= MOD;
}
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
// 負数も含む丸め
long long ceildiv(long long a, long long b) {
if (b < 0)
a = -a, b = -b;
if (a >= 0)
return (a + b - 1) / b;
else
return a / b;
}
long long floordiv(long long a, long long b) {
if (b < 0)
a = -a, b = -b;
if (a >= 0)
return a / b;
else
return (a - b + 1) / b;
}
long long floorsqrt(long long x) {
assert(x >= 0);
long long ok = 0;
long long ng = 1;
while (ng * ng <= x)
ng <<= 1;
while (ng - ok > 1) {
long long mid = (ng + ok) >> 1;
if (mid * mid <= x)
ok = mid;
else
ng = mid;
}
return ok;
}
// @brief a^n mod mod
long long modpower(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
// @brief s が c を含むか
template <class T> bool contain(const std::string &s, const T &c) {
return s.find(c) != std::string::npos;
}
__attribute__((constructor)) void faster_io() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
}
/* #endregion */
template <class T> struct RangeSet {
private:
const T TINF = std::numeric_limits<T>::max() / 2;
std::set<std::pair<T, T>> st;
public:
RangeSet() {
st.emplace(-TINF, -TINF + 1);
st.emplace(TINF, TINF + 1);
}
//[l, r) is covered?
bool covered(const T l, const T r) {
assert(l < r);
auto itr = prev(st.lower_bound({l + 1, -TINF}));
return itr->first <= l and r <= itr->second;
}
//[x, x + 1) is covered?
bool covered(const T x) { return covered(x, x + 1); }
// return section which covers[l, r)
// if not exists, return[-TINF, -TINF)
std::pair<T, T> covered_by(const T l, const T r) {
assert(l < r);
auto itr = prev(st.lower_bound({l + 1, -TINF}));
if (itr->first <= l and r <= itr->second)
return *itr;
return {-TINF, -TINF};
}
// return section which covers[x, x + 1)
// if not exists, return[-TINF, -TINF)
std::pair<T, T> covered_by(const T x) { return covered_by(x, x + 1); }
// insert[l, r), and return increment
T insert(T l, T r) {
if (l >= r)
return 0;
auto itr = prev(st.lower_bound({l + 1, -TINF}));
if (itr->first <= l and r <= itr->second)
return T(0);
T sum_erased = T(0);
if (itr->first <= l and l <= itr->second) {
l = itr->first;
sum_erased += itr->second - itr->first;
itr = st.erase(itr);
} else
itr = next(itr);
while (r > itr->second) {
sum_erased += itr->second - itr->first;
itr = st.erase(itr);
}
if (itr->first <= r) {
sum_erased += itr->second - itr->first;
r = itr->second;
st.erase(itr);
}
st.emplace(l, r);
return r - l - sum_erased;
}
// insert[x, x + 1), and return increment
T insert(const T x) { return insert(x, x + 1); }
// erase [l, r), and return decrement
T erase(const T l, const T r) {
assert(l < r);
auto itr = prev(st.lower_bound({l + 1, -TINF}));
if (itr->first <= l and r <= itr->second) {
if (itr->first < l)
st.emplace(itr->first, l);
if (r < itr->second)
st.emplace(r, itr->second);
st.erase(itr);
return r - l;
}
T ret = T(0);
if (itr->first <= l and l < itr->second) {
ret += itr->second - l;
if (itr->first < l)
st.emplace(itr->first, l);
itr = st.erase(itr);
} else
itr = next(itr);
while (itr->second <= r) {
ret += itr->second - itr->first;
itr = st.erase(itr);
}
if (itr->first < r) {
ret += r - itr->first;
st.emplace(r, itr->second);
st.erase(itr);
}
return ret;
}
// erase [x, x + 1), and return decrement
T erase(const T x) { return erase(x, x + 1); }
int size() { return (int)st.size() - 2; }
// x 以上で区間に含まれていない最小の値を返す
int mex(const T x = 0) {
auto itr = prev(st.lower_bound({x + 1, -TINF}));
if (itr->first <= x and x < itr->second)
return itr->second;
else
return x;
}
// 点の数を返す
T sum_all() const {
T res = 0;
for (auto &p : st) {
if (std::abs(p.first) == TINF)
continue;
res += p.second - p.first;
}
return res;
}
std::set<std::pair<T, T>> get() const {
std::set<std::pair<T, T>> res;
for (auto &p : st) {
if (std::abs(p.first) == TINF)
continue;
res.emplace(p.first, p.second);
}
return res;
}
void dump() const {
std::cout << "Rangeset:";
for (auto &p : st) {
if (std::abs(p.first) == TINF)
continue;
std::cout << "[" << p.first << "," << p.second << "),";
}
std::cout << '\n';
}
};
// cf. https://atcoder.jp/contests/arc112/submissions/20166587
// https://scrapbox.io/fukucchi/%E5%8C%BA%E9%96%93
/*
int b, c;
signed main() {
cin >> b >> c;
RangeSet<long long> rs;
rs.insert(-b - (c - 1) / 2, -b + (c - 1) / 2 + 1);
rs.insert(b - c / 2, b + (c - 2) / 2 + 1);
rs.dump();
print(rs.sum_all());
print(rs.mex(10));
return 0;
}
*/
int p;
int get_grundy(int n, int k) {
RangeSet<long long> rs;
VI grundy(n, -1);
VI cnt(max(n, k) + 10, 0);
grundy[n - 1] = 0; // 負け確局面
cnt[grundy[n - 1]]++;
rs.insert(grundy[n - 1], grundy[n - 1] + 1);
FORD(ni, max(0LL, n - 1 - k), n - 1) {
int mex = rs.mex(0);
grundy[ni] = mex;
cnt[grundy[ni]]++;
rs.insert(grundy[ni], grundy[ni] + 1);
}
REPD(ni, max(0LL, n - 1 - k)) {
// 尺取り
cnt[grundy[ni + k + 1]]--;
if (cnt[grundy[ni + k + 1]] == 0)
rs.erase(grundy[ni + k + 1], grundy[ni + k + 1] + 1);
cnt[grundy[ni + 1]]++;
rs.insert(grundy[ni + 1], grundy[ni + 1] + 1);
int mex = rs.mex(0);
grundy[ni] = mex;
}
return grundy[0];
}
void solve(int n, int k) {
if (get_grundy(n, k) == 0) {
print("Lose");
} else {
print("Win");
}
}
signed main() {
cin >> p;
VI N(p), K(p);
REP(pi, p) { cin >> N[pi] >> K[pi]; }
REP(pi, p) { solve(N[pi], K[pi]); }
return 0;
}
Fukucchi