結果

問題 No.1500 Super Knight
ユーザー haruki_Kharuki_K
提出日時 2021-05-08 18:03:49
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 8 ms / 2,000 ms
コード長 11,154 bytes
コンパイル時間 2,463 ms
コンパイル使用メモリ 227,380 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-16 23:35:58
合計ジャッジ時間 3,565 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 6 ms
6,812 KB
testcase_01 AC 8 ms
6,812 KB
testcase_02 AC 7 ms
6,940 KB
testcase_03 AC 7 ms
6,944 KB
testcase_04 AC 7 ms
6,944 KB
testcase_05 AC 6 ms
6,944 KB
testcase_06 AC 6 ms
6,940 KB
testcase_07 AC 6 ms
6,940 KB
testcase_08 AC 6 ms
6,944 KB
testcase_09 AC 7 ms
6,944 KB
testcase_10 AC 7 ms
6,944 KB
testcase_11 AC 7 ms
6,944 KB
testcase_12 AC 7 ms
6,944 KB
testcase_13 AC 6 ms
6,944 KB
testcase_14 AC 6 ms
6,940 KB
testcase_15 AC 6 ms
6,940 KB
testcase_16 AC 2 ms
6,940 KB
testcase_17 AC 7 ms
6,944 KB
testcase_18 AC 7 ms
6,940 KB
testcase_19 AC 6 ms
6,944 KB
testcase_20 AC 7 ms
6,940 KB
testcase_21 AC 7 ms
6,944 KB
testcase_22 AC 7 ms
6,940 KB
testcase_23 AC 6 ms
6,940 KB
testcase_24 AC 6 ms
6,940 KB
testcase_25 AC 7 ms
6,944 KB
testcase_26 AC 6 ms
6,944 KB
testcase_27 AC 7 ms
6,944 KB
testcase_28 AC 7 ms
6,944 KB
testcase_29 AC 7 ms
6,944 KB
testcase_30 AC 6 ms
6,940 KB
testcase_31 AC 6 ms
6,944 KB
testcase_32 AC 6 ms
6,940 KB
testcase_33 AC 6 ms
6,940 KB
testcase_34 AC 6 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// >>> TEMPLATES
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
#define int ll
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)
#define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--)
#define rep1R(i, n) for (int i = (int)(n); i >= 1; i--)
#define loop(i, a, B) for (int i = a; i B; i++)
#define loopR(i, a, B) for (int i = a; i B; i--)
#define all(x) begin(x), end(x)
#define allR(x) rbegin(x), rend(x)
#define rng(x, l, r) begin(x) + (l), begin(x) + (r)
#define pb push_back
#define eb emplace_back
#define fst first
#define snd second
template <class A, class B> constexpr auto mp(A &&a, B &&b) { return make_pair(forward<A>(a), forward<B>(b)); }
template <class... T> constexpr auto mt(T&&... x) { return make_tuple(forward<T>(x)...); }
template <class Int> auto constexpr inf_ = numeric_limits<Int>::max()/2-1;
auto constexpr INF32 = inf_<int32_t>;
auto constexpr INF64 = inf_<int64_t>;
auto constexpr INF   = inf_<int>;
#ifdef LOCAL
#include "debug.hpp"
#else
#define dump(...) (void)(0)
#define say(x) (void)(0)
#define debug if (0)
#endif
template <class T, class Comp> struct pque : priority_queue<T, vector<T>, Comp> { vector<T> &data() { return this->c; } void clear() { this->c.clear(); } };
template <class T> using pque_max = pque<T, less<T>>;
template <class T> using pque_min = pque<T, greater<T>>;
template <class T, class = typename T::iterator, enable_if_t<!is_same<T, string>::value, int> = 0>
ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, size_t N, enable_if_t<!is_same<T, char>::value, int> = 0>
ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, class = decltype(begin(declval<T&>())), class = typename enable_if<!is_same<T, string>::value>::type>
istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; }
template <class T, class S> ostream& operator<<(ostream& os, pair<T, S> const& p) { return os << p.first << " " << p.second; }
template <class T, class S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; }
struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup;
template <class F> struct FixPoint : private F {
    constexpr FixPoint(F&& f) : F(forward<F>(f)) {}
    template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); }
};
struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } };
#define MFP MakeFixPoint()|
#define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__)
template <class T, size_t d> struct vec_impl {
    using type = vector<typename vec_impl<T, d-1>::type>;
    template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T, d-1>::make_v(forward<U>(x)...)); }
};
template <class T> struct vec_impl<T, 0> { using type = T; static type make_v(T const& x = {}) { return x; } };
template <class T, size_t d = 1> using vec = typename vec_impl<T, d>::type;
template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T, d>::make_v(forward<Args>(args)...); }
template <class T> void quit(T const& x) { cout << x << endl; exit(0); }
template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > y) { x = y; return true; } return false; }
template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < y) { x = y; return true; } return false; }
template <class It> constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits<It>::value_type{}); }
template <class T> int sz(T const& x) { return x.size(); }
template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); }
template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); }
constexpr int64_t mod(int64_t x, int64_t m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; }
constexpr int64_t div_floor(int64_t x, int64_t y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); }
constexpr int64_t div_ceil(int64_t x, int64_t y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); }
constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 };
constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 };
constexpr int popcnt(ll x) { return __builtin_popcountll(x); }
mt19937_64 seed_{random_device{}()};
template <class Int> Int rand(Int a, Int b) { return uniform_int_distribution<Int>(a, b)(seed_); }
i64 irand(i64 a, i64 b) { return rand<i64>(a, b); } // [a, b]
u64 urand(u64 a, u64 b) { return rand<u64>(a, b); } //
template <class It> void shuffle(It l, It r) { shuffle(l, r, seed_); }
vector<int> &operator--(vector<int> &v) { for (int &x : v) --x; return v; }
vector<int> &operator++(vector<int> &v) { for (int &x : v) ++x; return v; }
// <<<
// >>> naive convolution
template <class ModInt>
vector<ModInt> operator*(vector<ModInt> const& a, vector<ModInt> const& b) {
    if (a.empty() || b.empty()) return {};
    vector<ModInt> ret(a.size() + b.size() - 1);
    rep (i, a.size()) rep (j, b.size()) ret[i+j] += a[i]*b[j];
    return ret;
}
template <class ModInt>
vector<ModInt>& operator*=(vector<ModInt>& a, vector<ModInt> const& b) {
    return a = a * b;
}
// <<<
// >>> eval [x^n] P(x)/Q(x)
template <class T> T coeff(vector<T> P, vector<T> Q, int n) {
    assert(P.size() >= 1u);
    assert(P.size() < Q.size());
    assert(Q[0] == 1);
    vector<T> nP, nQ, R;
    while (n > 0) {
        R.resize(Q.size());
        rep (i, R.size()) R[i] = (i&1 ? -Q[i] : Q[i]);
        P = P * R; Q = Q * R;
        nP.clear(); nQ.clear();
        for (size_t i = n&1; i < P.size(); i += 2) nP.push_back(P[i]);
        for (size_t i =   0; i < Q.size(); i += 2) nQ.push_back(Q[i]);
        swap(nP, P); swap(nQ, Q);
        n >>= 1;
    }
    return P[0];
}
template <class T>
T coeff(pair<vector<T>, vector<T>> const& PQ, int n) {
    return coeff(PQ.first, PQ.second, n);
}
// <<<
// >>> Berlekamp–Massey

template <class mint>
pair<vector<mint>, vector<mint>> BM(vector<mint> const& s) {
    vector<mint> C = { 1 }, B = { 1 };
    mint b = 1;
    int m = -1, L = 0, N = s.size();
    for (int n = 0; n < N; n++) {
        mint d = 0;
        rep (i, C.size()) d += s[n-i] * C[i];
        if (d == 0) continue;
        auto T = C;
        int nL = max(L, n - m + (int)B.size() - 1);
        C.resize(nL + 1);
        auto c = d / b;
        rep (i, B.size()) C[n - m + i] -= c * B[i];
        if (nL > L) B = T, b = d, m = n, L = nL;
    }
    if (2*L > N) return {{}, {}};
    vector<mint> A(s.size() + C.size() - 1);
    rep (i, s.size()) rep (j, C.size()) A[i + j] += s[i] * C[j];
    A.resize(s.size());
    while (A.size() and A.back() == 0) A.pop_back();
    assert(A.size() < C.size());
    return { A, C };
}

// <<<
// >>> modint

template <uint32_t md>
class modint {
    static_assert(md < (1u<<31), "");
    using M = modint;
    using i64 = int64_t;
    uint32_t x;
public:
    static constexpr uint32_t mod = md;
    constexpr modint(i64 x = 0) : x((x%=md) < 0 ? x+md : x) { }
    constexpr i64 val() const { return x; }
    constexpr explicit operator i64() const { return x; }
    constexpr bool operator==(M r) const { return x == r.x; }
    constexpr bool operator!=(M r) const { return x != r.x; }
    constexpr M operator+() const { return *this; }
    constexpr M operator-() const { return M()-*this; }
    constexpr M& operator+=(M r) { x += r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator-=(M r) { x += md-r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator*=(M r) { x = (uint64_t(x)*r.x)%md; return *this; }
    constexpr M& operator/=(M r) { return *this *= r.inv(); }
    constexpr M operator+(M r) const { return M(*this) += r; }
    constexpr M operator-(M r) const { return M(*this) -= r; }
    constexpr M operator*(M r) const { return M(*this) *= r; }
    constexpr M operator/(M r) const { return M(*this) /= r; }
    friend constexpr M operator+(i64 x, M y) { return M(x)+y; }
    friend constexpr M operator-(i64 x, M y) { return M(x)-y; }
    friend constexpr M operator*(i64 x, M y) { return M(x)*y; }
    friend constexpr M operator/(i64 x, M y) { return M(x)/y; }
    constexpr M inv() const { assert(x > 0); return pow(md-2); }
    constexpr M pow(i64 n) const {
        assert(not (x == 0 and n == 0));
        if (n < 0) return inv().pow(-n);
        M v = *this, r = 1;
        for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v;
        return r;
    }
#ifdef LOCAL
    friend string to_s(M r) { return to_s(r.val(), mod); }
#endif
    friend ostream& operator<<(ostream& os, M r) { return os << r.val(); }
    friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; }
};

// <<<
//constexpr int64_t MOD = 998244353;
constexpr int64_t MOD = 1e9+7;
using mint = modint<MOD>;
mint sign(int n) { return n & 1 ? -1 : +1; }
// >>> mod table

template <class mint> struct ModTable {
    vector<mint> fact, finv;
    void calc(int n) {
        int old = fact.size();
        if (n < old) return;
        n += 1000;
        fact.resize(n+1);
        finv.resize(n+1);
        if (old == 0) {
            fact[0] = fact[1] = finv[0] = finv[1] = 1;
            old = 2;
        }
        for (auto i = old; i <= n; i++) fact[i] = fact[i-1] * i;
        finv[n] = mint(1) / fact[n];
        for (auto i = n-1; i >= old; i--) finv[i] = finv[i+1] * (i+1);
    }
};
ModTable<mint> mod_tab;

mint fact(int n) {
    assert(0 <= n);
    return mod_tab.calc(n), mod_tab.fact[n];
}
mint finv(int n) {
    assert(0 <= n);
    return mod_tab.calc(n), mod_tab.finv[n];
}
mint comb(int n, int k) {
    if (n < 0 || k < 0 || n < k) return 0;
    mod_tab.calc(n);
    return mod_tab.fact[n] * mod_tab.finv[k] * mod_tab.finv[n-k];
}
mint perm(int n, int k) {
    assert(k >= 0); assert(n >= k);
    mod_tab.calc(n);
    return mod_tab.fact[n] * mod_tab.finv[n-k];
}

// <<<

int32_t main() {
    int n; cin >> n;
    if (n == 0) quit(1);

    set<pair<int, int>> st;
    st.emplace(0, 0);
    int K = 10;
    vector<mint> a;
    rep (_, K) {
        set<pair<int, int>> nst;
        for (auto [a, b] : st) {
            nst.emplace(a + 3, b - 2);
            nst.emplace(a + 3, b + 0);
            nst.emplace(a + 3, b + 2);
            nst.emplace(a - 3, b - 2);
            nst.emplace(a - 3, b + 0);
            nst.emplace(a - 3, b + 2);

            nst.emplace(a + 2, b + 3);
            nst.emplace(a + 0, b + 3);
            nst.emplace(a - 2, b + 3);
            nst.emplace(a + 2, b - 3);
            nst.emplace(a + 0, b - 3);
            nst.emplace(a - 2, b - 3);
        }
        swap(st, nst);
        dump(st.size());
        a.eb(st.size());
    }

    cout << coeff(BM(a), n-1) << '\n';

}
0