結果
| 問題 |
No.907 Continuous Kadomatu
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2021-05-11 03:56:41 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 163 ms / 2,000 ms |
| コード長 | 13,882 bytes |
| コンパイル時間 | 12,613 ms |
| コンパイル使用メモリ | 379,780 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-21 10:00:34 |
| 合計ジャッジ時間 | 14,413 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 25 |
コンパイルメッセージ
warning: associated function `one` is never used
--> src/main.rs:452:8
|
440 | impl Poly {
| --------- associated function in this implementation
...
452 | fn one() -> Self {
| ^^^
|
= note: `#[warn(dead_code)]` on by default
ソースコード
// ---------- begin ModInt ----------
mod modint {
#[allow(dead_code)]
pub struct Mod;
impl ConstantModulo for Mod {
const MOD: u32 = 1_000_000_007;
}
#[allow(dead_code)]
pub struct StaticMod;
static mut STATIC_MOD: u32 = 0;
impl Modulo for StaticMod {
fn modulo() -> u32 {
unsafe { STATIC_MOD }
}
}
#[allow(dead_code)]
impl StaticMod {
pub fn set_modulo(p: u32) {
unsafe {
STATIC_MOD = p;
}
}
}
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub trait ConstantModulo {
const MOD: u32;
}
impl<T> Modulo for T
where
T: ConstantModulo,
{
fn modulo() -> u32 {
T::MOD
}
}
pub struct ModInt<T>(pub u32, PhantomData<T>);
impl<T> Clone for ModInt<T> {
fn clone(&self) -> Self {
ModInt::new_unchecked(self.0)
}
}
impl<T> Copy for ModInt<T> {}
impl<T: Modulo> Add for ModInt<T> {
type Output = ModInt<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut d = self.0 + rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModInt::new_unchecked(d)
}
}
impl<T: Modulo> AddAssign for ModInt<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModInt<T> {
type Output = ModInt<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut d = T::modulo() + self.0 - rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModInt::new_unchecked(d)
}
}
impl<T: Modulo> SubAssign for ModInt<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModInt<T> {
type Output = ModInt<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
ModInt::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModInt<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModInt<T> {
type Output = ModInt<T>;
fn neg(self) -> Self::Output {
if self.0 == 0 {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> std::fmt::Debug for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T: Modulo> std::str::FromStr for ModInt<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<T: Modulo> From<usize> for ModInt<T> {
fn from(val: usize) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<u64> for ModInt<T> {
fn from(val: u64) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as u64) as u32)
}
}
impl<T: Modulo> From<i64> for ModInt<T> {
fn from(val: i64) -> ModInt<T> {
let m = T::modulo() as i64;
ModInt::new((val % m + m) as u32)
}
}
#[allow(dead_code)]
impl<T> ModInt<T> {
pub fn new_unchecked(d: u32) -> Self {
ModInt(d, PhantomData)
}
pub fn zero() -> Self {
ModInt::new_unchecked(0)
}
pub fn one() -> Self {
ModInt::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
#[allow(dead_code)]
impl<T: Modulo> ModInt<T> {
pub fn new(d: u32) -> Self {
ModInt::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(T::modulo() as u64 - 2)
}
}
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
use super::modint::*;
#[allow(dead_code)]
pub struct Precalc<T> {
inv: Vec<ModInt<T>>,
fact: Vec<ModInt<T>>,
ifact: Vec<ModInt<T>>,
}
#[allow(dead_code)]
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModInt::one(); n + 1];
let mut fact = vec![ModInt::one(); n + 1];
let mut ifact = vec![ModInt::one(); n + 1];
for i in 2..(n + 1) {
fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc {
inv: inv,
fact: fact,
ifact: ifact,
}
}
pub fn inv(&self, n: usize) -> ModInt<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModInt<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
}
// ---------- end Precalc ----------
use modint::*;
type M = ModInt<Mod>;
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// 適当に座標圧縮
// dp[区間] = (確率密度関数)
// として頑張る
#[derive(Clone)]
pub struct Poly(Vec<M>);
use std::ops::*;
impl Add for Poly {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
&self + &rhs
}
}
impl Add<&Poly> for Poly {
type Output = Self;
fn add(self, rhs: &Self) -> Self::Output {
&self + rhs
}
}
impl Add<Poly> for &Poly {
type Output = Poly;
fn add(self, rhs: Poly) -> Self::Output {
self + &rhs
}
}
impl Add for &Poly {
type Output = Poly;
fn add(self, rhs: Self) -> Self::Output {
let mut c = vec![M::zero(); self.0.len().max(rhs.0.len())];
c.iter_mut().zip(&self.0).for_each(|p| *p.0 += *p.1);
c.iter_mut().zip(&rhs.0).for_each(|p| *p.0 += *p.1);
Poly::new(c)
}
}
impl AddAssign<&Poly> for Poly {
fn add_assign(&mut self, rhs: &Self) {
if self.0.len() < rhs.0.len() {
self.0.resize(rhs.0.len(), M::zero());
}
self.0.iter_mut().zip(rhs.0.iter()).for_each(|p| *p.0 += *p.1);
self.fix();
}
}
impl Sub for Poly {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
&self - &rhs
}
}
impl Sub<&Poly> for Poly {
type Output = Self;
fn sub(self, rhs: &Self) -> Self::Output {
&self - rhs
}
}
impl Sub<Poly> for &Poly {
type Output = Poly;
fn sub(self, rhs: Poly) -> Self::Output {
self - &rhs
}
}
impl Sub for &Poly {
type Output = Poly;
fn sub(self, rhs: Self) -> Self::Output {
let mut c = vec![M::zero(); self.0.len().max(rhs.0.len())];
c.iter_mut().zip(&self.0).for_each(|p| *p.0 += *p.1);
c.iter_mut().zip(&rhs.0).for_each(|p| *p.0 -= *p.1);
Poly::new(c)
}
}
impl SubAssign<&Poly> for Poly {
fn sub_assign(&mut self, rhs: &Self) {
if self.0.len() < rhs.0.len() {
self.0.resize(rhs.0.len(), M::zero());
}
self.0.iter_mut().zip(rhs.0.iter()).for_each(|p| *p.0 -= *p.1);
self.fix();
}
}
impl Mul for Poly {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
&self * &rhs
}
}
impl Mul<&Poly> for Poly {
type Output = Self;
fn mul(self, rhs: &Self) -> Self::Output {
&self * rhs
}
}
impl Mul<Poly> for &Poly {
type Output = Poly;
fn mul(self, rhs: Poly) -> Self::Output {
self * &rhs
}
}
impl Mul for &Poly {
type Output = Poly;
fn mul(self, rhs: Self) -> Self::Output {
if self.is_zero() || rhs.is_zero() {
return Poly::zero();
}
let mut c = vec![M::zero(); self.0.len() + rhs.0.len() - 1];
for (i, a) in self.0.iter().enumerate() {
for (c, b) in c[i..].iter_mut().zip(rhs.0.iter()) {
*c += *a * *b;
}
}
Poly::new(c)
}
}
impl MulAssign<&Poly> for Poly {
fn mul_assign(&mut self, rhs: &Self) {
*self = &*self * rhs;
}
}
impl Poly {
fn from(a: &[M]) -> Self {
Poly::new(Vec::from(a))
}
fn new(a: Vec<M>) -> Self {
let mut res = Poly(a);
res.fix();
res
}
fn zero() -> Self {
Poly::new(vec![])
}
fn one() -> Self {
Poly::new(vec![M::one()])
}
fn fix(&mut self) {
while self.0.last().map_or(false, |a| a.is_zero()) {
self.0.pop();
}
}
fn is_zero(&self) -> bool {
self.0.is_empty()
}
fn integral(&self) -> Self {
if self.is_zero() {
return Poly::zero();
}
let mut inv = vec![M::one(); self.0.len() + 1];
for i in 1..inv.len() {
inv[i] = M::from(i) * inv[i - 1];
}
let mut ifact = inv[self.0.len()].inv();
for i in (1..inv.len()).rev() {
inv[i] = inv[i - 1] * ifact;
ifact *= M::from(i);
}
let mut c = vec![M::zero(); self.0.len() + 1];
for (i, a) in self.0.iter().enumerate() {
c[i + 1] = inv[i + 1] * *a;
}
Poly::new(c)
}
fn eval(&self, x: M) -> M {
self.0.iter().rfold(M::zero(), |s, a| s * x + *a)
}
}
fn run() {
input! {
n: usize,
p: [(usize, usize); n],
}
let mut z = vec![];
z.extend(p.iter().map(|p| p.0));
z.extend(p.iter().map(|p| p.1));
z.sort();
z.dedup();
let mut dp = vec![Poly::zero(); z.len() - 1];
let ini = Poly::from(&[M::from(p[0].1 - p[0].0).inv()]);
for (i, z) in z.windows(2).enumerate() {
if p[0].0 <= z[0] && z[1] <= p[0].1 {
dp[i] = ini.clone();
}
}
for (p, &(l, r)) in p[1..].iter().enumerate() {
let inv = M::from(r - l).inv();
let l = z.binary_search(&l).unwrap();
let r = z.binary_search(&r).unwrap();
let mut all = M::zero();
for (z, dp) in z.windows(2).zip(&dp) {
let f = dp.integral();
all += f.eval(M::from(z[1])) - f.eval(M::from(z[0]));
}
let all = all;
let mut sum = M::zero();
for i in 0..dp.len() {
let f = dp[i].integral();
dp[i] = Poly::zero();
if l <= i && i < r {
let mut g = f.clone();
g -= &Poly::from(&[f.eval(M::from(z[i]))]);
g += &Poly::from(&[sum]);
if p % 2 == 1 {
g = Poly::from(&[all]) - g;
}
g *= &Poly::from(&[inv]);
dp[i] = g;
}
sum += f.eval(M::from(z[i + 1])) - f.eval(M::from(z[i]));
}
}
let mut ans = M::zero();
for (i, z) in z.windows(2).enumerate() {
let f = dp[i].integral();
ans += f.eval(M::from(z[1])) - f.eval(M::from(z[0]));
}
println!("{}", ans);
}
fn main() {
run();
}
akakimidori