結果
問題 | No.106 素数が嫌い!2 |
ユーザー | kohei2019 |
提出日時 | 2021-06-02 21:09:56 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 3,959 ms / 5,000 ms |
コード長 | 6,747 bytes |
コンパイル時間 | 1,711 ms |
コンパイル使用メモリ | 81,764 KB |
実行使用メモリ | 462,264 KB |
最終ジャッジ日時 | 2024-11-15 16:48:55 |
合計ジャッジ時間 | 28,062 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,506 ms
252,336 KB |
testcase_01 | AC | 40 ms
53,932 KB |
testcase_02 | AC | 39 ms
53,892 KB |
testcase_03 | AC | 41 ms
54,360 KB |
testcase_04 | AC | 1,545 ms
252,464 KB |
testcase_05 | AC | 3,948 ms
462,264 KB |
testcase_06 | AC | 3,859 ms
462,252 KB |
testcase_07 | AC | 3,959 ms
462,260 KB |
testcase_08 | AC | 166 ms
91,164 KB |
testcase_09 | AC | 170 ms
91,480 KB |
testcase_10 | AC | 3,833 ms
462,256 KB |
testcase_11 | AC | 1,318 ms
232,300 KB |
testcase_12 | AC | 3,521 ms
444,768 KB |
testcase_13 | AC | 41 ms
54,676 KB |
testcase_14 | AC | 41 ms
53,612 KB |
testcase_15 | AC | 50 ms
63,980 KB |
ソースコード
import math import sys sys.setrecursionlimit(10**7) #競技プログラミング対整数問題のライブラリーです class segki_pro_mod(): def __init__(self, N, ls, mod): self.mod = mod self.default = 1 self.func = (lambda x, y: (x * y) % self.mod) self.N = N self.K = (N - 1).bit_length() self.N2 = 1 << self.K self.dat = [self.default] * (2**(self.K + 1)) for i in range(self.N): # 葉の構築 self.dat[self.N2 + i] = ls[i] self.build() def build(self): for j in range(self.N2 - 1, -1, -1): self.dat[j] = self.func(self.dat[j << 1], self.dat[j << 1 | 1]) # 親が持つ条件 def leafvalue(self, x): # リストのx番目の値 return self.dat[x + self.N2] def update(self, x, y): # index(x)をyに変更 i = x + self.N2 self.dat[i] = y while i > 0: # 親の値を変更 i >>= 1 self.dat[i] = self.func(self.dat[i << 1], self.dat[i << 1 | 1]) return def query(self, L, R): # [L,R)の区間取得 L += self.N2 R += self.N2 vL = self.default vR = self.default while L < R: if L & 1: vL = self.func(vL, self.dat[L]) L += 1 if R & 1: R -= 1 vR = self.func(self.dat[R], vR) L >>= 1 R >>= 1 return self.func(vL, vR) class integerlib(): def __init__(self): pass def primeset(self,N): #N以下の素数をsetで求める.エラトステネスの篩O(√Nlog(N)) lsx = [1]*(N+1) for i in range(2,int(-(-N**0.5//1))+1): if lsx[i] == 1: for j in range(i,N//i+1): lsx[j*i] = 0 setprime = set() for i in range(2,N+1): if lsx[i] == 1: setprime.add(i) return setprime def defprime(self,N):#素数かどうかの判定、エラトステネスの篩O(√Nlog(N)) return N in self.primeset(N) def gcd(self,ls):#最大公約数 ls = list(ls) ans = 0 for i in ls: ans = math.gcd(ans,i) return ans def lmc(self,ls):#最小公倍数 ls = list(ls) ans = self.gcd(ls) for i in ls: ans = self.lmcsub(ans,i) return ans def lmcsub(self,a,b): gcd = math.gcd(a,b) lmc = (a*b)//gcd return lmc def factorization(self,N):#素因数分解√N arr = [] temp = N for i in range(2, int(-(-N**0.5//1))+1): if temp%i==0: cnt=0 while temp%i==0: cnt+=1 temp //= i arr.append([i, cnt]) if temp!=1: arr.append([temp, 1]) if arr==[]: arr.append([N, 1]) return arr #[素因数、個数] def factorizationset(self,N):#素因数分解√N,含まれている素因数の種類 if N == 1: return set() ls = self.factorization(N) setf = set() for j in ls: setf.add(j[0]) return setf def divisorsnum(self,N):#約数の個数 ls = [] for i in self.factorization(N): ls.append(i[1]) d = 1 for i in ls: d *= i+1 return d def Eulerfunc(self,N):#オイラー関数正の整数Nが与えられる。1,2,…,Nのうち、Nと互いに素であるものの個数を求めよ。 ls = list(self.factorizationset(N)) ls2 = [N] for i in ls: ls2.append(ls2[-1]-ls2[-1]//i) return ls2[-1] def make_divisors(self,N):#約数列挙O(√N) lower_divisors , upper_divisors = [], [] i = 1 while i*i <= N: if N % i == 0: lower_divisors.append(i) if i != N // i: upper_divisors.append(N//i) i += 1 return lower_divisors + upper_divisors[::-1] def invmod(self,a,mod):#mod逆元 a %= mod if a == 0: return 0 if a == 1: return 1 return (-self.invmod(mod % a, mod) * (mod // a)) % mod def cmbmod(self,n, r, mod):#nCr % mod inv = [0,1] for i in range(2, n + 1): inv.append((-inv[mod % i] * (mod // i)) % mod) cmd = 1 for i in range(1,min(r,n-r)+1): cmd = (cmd*(n-i+1)*inv[i])%mod return cmd def permmod(self,n, r, mod):#nPr % mod perm = 1 for i in range(n,r-1,-1): perm = (perm*i)%mod return perm def modPow(self,a,n,mod):#繰り返し二乗法 a**n % mod if n==0: return 1 if n==1: return a%mod if n % 2 == 1: return (a*self.modPow(a,n-1,mod)) % mod t = self.modPow(a,n//2,mod) return (t*t)%mod def invmodls(self,n,mod):#nまでのinvmod inv = [0,1] for i in range(2, n + 1): inv.append((-inv[mod % i] * (mod // i)) % mod) return inv def factorization_all_n(self,n):#n以下の自然数すべてをを素因数分解 lspn = [[] for i in range(n+1)] lsnum = [i for i in range(n+1)] lsp = list(self.primeset(n)) lsp.sort() for p in lsp: for j in range(1,n//p+1): cnt = 0 while lsnum[p*j]%p==0: lsnum[p*j] //= p cnt += 1 lspn[j*p].append((p,cnt)) return lspn def cmbmodls(self,n,mod):#二項係数逆元使えないver lsans = [1] lsp = list(self.primeset(n)) lsp.sort() invp = [0]*(n+1) lspmod = [] for i in range(len(lsp)): invp[lsp[i]] =i lspmod.append(lsp[i]%mod) lsX = [0]*(len(lsp)) SG = segki_pro_mod(len(lsp),[1]*len(lsp),mod) lspn = self.factorization_all_n(n) for i in range(1,n+1): l = n-i+1 r = i change = set() for p,cnt in lspn[l]: lsX[invp[p]] += cnt change.add(invp[p]) for p,cnt in lspn[r]: lsX[invp[p]] -= cnt change.add(invp[p]) changels = list(change) for j in changels: SG.update(j,self.modPow(lsp[j],lsX[j],mod)) lsans.append(SG.dat[1]) return lsans N,K = map(int,input().split()) IT = integerlib() ls = IT.factorization_all_n(N) cnt = 0 for i in range(N+1): if len(ls[i]) >= K: cnt += 1 print(cnt)