結果
問題 | No.931 Multiplicative Convolution |
ユーザー |
![]() |
提出日時 | 2021-06-03 20:36:22 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 732 ms / 2,000 ms |
コード長 | 1,551 bytes |
コンパイル時間 | 123 ms |
コンパイル使用メモリ | 12,672 KB |
実行使用メモリ | 69,196 KB |
最終ジャッジ日時 | 2024-11-17 08:24:54 |
合計ジャッジ時間 | 15,019 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
ソースコード
import numpy as np fft = np.fft.rfft ifft = np.fft.irfft mod = 998244353 def gen(p): fact = [] phi = p - 1 n = phi for i in range(2, int(n**0.5) + 1): if n % i == 0: fact.append(i) while n % i == 0: n //= i if n > 1: fact.append(n) for res in range(2, p+1): ok = True for f in fact: if pow(res, phi//f, p) == 1: ok = False break if ok: return res return -1 def conv(A, B): n = len(A) + len(B) - 1 sz = 1 << (n-1).bit_length() res = ifft(fft(A, sz) * fft(B, sz), sz) return np.rint(res).astype(np.int64)[:n] def mod_conv(A, B): a1, a2 = np.divmod(A, 1 << 15) b1, b2 = np.divmod(B, 1 << 15) x = conv(a1, b1) % mod y = conv(a2, b2) % mod xy = (conv(a1 + a2, b1 + b2) - (x + y)) % mod res = (x << 30) % mod + (xy << 15) % mod + y return res % mod def mod_pow(n, power, mod): """ [n^0, n^1, n^2, ..., n^(power-1)] """ D = power.bit_length() res = np.empty(1 << D, np.int64) res[0] = 1 for d in range(D): res[(1 << d): (1 << (d + 1))] = \ res[:(1 << d)] * n % mod * res[(1 << d) - 1] % mod return res[:power] P = int(input()) A = np.array(input().split(), dtype=np.int64) B = np.array(input().split(), dtype=np.int64) g = gen(P) idx = mod_pow(g, P - 1, P) - 1 X = A[idx] Y = B[idx] Z = mod_conv(X, Y) Z[:P-2] += Z[P-1:] ans = np.empty(P-1, dtype=np.int64) ans[idx] = Z[:P-1] % mod print(*ans)