結果

問題 No.1529 Constant Lcm
ユーザー 👑 emthrmemthrm
提出日時 2021-06-04 20:14:06
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,140 ms / 3,000 ms
コード長 6,069 bytes
コンパイル時間 2,099 ms
コンパイル使用メモリ 216,220 KB
実行使用メモリ 352,648 KB
最終ジャッジ日時 2024-11-19 08:19:35
合計ジャッジ時間 14,337 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 4 ms
6,816 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 1 ms
6,816 KB
testcase_09 AC 1 ms
6,816 KB
testcase_10 AC 1,020 ms
306,552 KB
testcase_11 AC 377 ms
122,600 KB
testcase_12 AC 21 ms
9,344 KB
testcase_13 AC 821 ms
264,148 KB
testcase_14 AC 503 ms
160,840 KB
testcase_15 AC 559 ms
180,652 KB
testcase_16 AC 452 ms
146,572 KB
testcase_17 AC 239 ms
77,808 KB
testcase_18 AC 253 ms
84,296 KB
testcase_19 AC 544 ms
170,088 KB
testcase_20 AC 1,128 ms
346,440 KB
testcase_21 AC 1,132 ms
347,744 KB
testcase_22 AC 1,118 ms
342,008 KB
testcase_23 AC 1,140 ms
352,648 KB
testcase_24 AC 1,095 ms
342,136 KB
testcase_25 AC 1,085 ms
330,916 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int val;
  MInt(): val(0) {}
  MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(int divisor) { assert(divisor == M); }
  static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
  static MInt inv(int x, bool init = false) {
    // assert(0 <= x && x < M && std::__gcd(x, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    int prev = inverse.size();
    if (init && x >= prev) {
      // "x!" and "M" must be disjoint.
      inverse.resize(x + 1);
      for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
    }
    if (x < inverse.size()) return inverse[x];
    unsigned int a = x, b = M; int u = 1, v = 0;
    while (b) {
      unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(int x) {
    static std::vector<MInt> f{1};
    int prev = f.size();
    if (x >= prev) {
      f.resize(x + 1);
      for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
    }
    return f[x];
  }
  static MInt fact_inv(int x) {
    static std::vector<MInt> finv{1};
    int prev = finv.size();
    if (x >= prev) {
      finv.resize(x + 1);
      finv[x] = inv(fact(x).val);
      for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
    }
    return finv[x];
  }
  static MInt nCk(int n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    if (n - k > k) k = n - k;
    return fact(n) * fact_inv(k) * fact_inv(n - k);
  }
  static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
  static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
  static MInt large_nCk(long long n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
    return res;
  }
  MInt pow(long long exponent) const {
    MInt tmp = *this, res = 1;
    while (exponent > 0) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
      exponent >>= 1;
    }
    return res;
  }
  MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
  MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
  MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
  MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
  bool operator==(const MInt &x) const { return val == x.val; }
  bool operator!=(const MInt &x) const { return val != x.val; }
  bool operator<(const MInt &x) const { return val < x.val; }
  bool operator<=(const MInt &x) const { return val <= x.val; }
  bool operator>(const MInt &x) const { return val > x.val; }
  bool operator>=(const MInt &x) const { return val >= x.val; }
  MInt &operator++() { if (++val == M) val = 0; return *this; }
  MInt operator++(int) { MInt res = *this; ++*this; return res; }
  MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
  MInt operator--(int) { MInt res = *this; --*this; return res; }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(val ? M - val : 0); }
  MInt operator+(const MInt &x) const { return MInt(*this) += x; }
  MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
  friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
  friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<MOD>;

std::vector<int> prime_sieve(int n, bool get_only_prime) {
  std::vector<int> prime, smallest_prime_factor(n + 1);
  std::iota(smallest_prime_factor.begin(), smallest_prime_factor.end(), 0);
  for (int i = 2; i <= n; ++i) {
    if (smallest_prime_factor[i] == i) prime.emplace_back(i);
    for (int p : prime) {
      if (i * p > n || p > smallest_prime_factor[i]) break;
      smallest_prime_factor[i * p] = p;
    }
  }
  return get_only_prime ? prime : smallest_prime_factor;
}

struct osa_k {
  std::vector<int> smallest_prime_factor;

  osa_k(int n = 10000000) : smallest_prime_factor(prime_sieve(n, false)) {}

  std::vector<std::pair<int, int>> query(int n) const {
    std::vector<std::pair<int, int>> res;
    while (n > 1) {
      int prime = smallest_prime_factor[n], exponent = 0;
      while (smallest_prime_factor[n] == prime) {
        ++exponent;
        n /= prime;
      }
      res.emplace_back(prime, exponent);
    }
    return res;
  }
};

int main() {
  int n; cin >> n;
  osa_k osa(n);
  vector<unordered_map<int, int>> f(n - 1);
  FOR(i, 1, n) {
    for (auto [p, ex] : osa.query(i)) {
      f[i - 1][p] += ex;
      f[n - 1 - i][p] += ex;
    }
  }
  unordered_map<int, int> l;
  REP(i, n - 1) for (auto [p, ex] : f[i]) chmax(l[p], ex);
  ModInt ans = 1;
  for (auto [p, ex] : l) ans *= ModInt(p).pow(ex);
  cout << ans << '\n';
  return 0;
}
0