結果

問題 No.1529 Constant Lcm
ユーザー kyaneko999
提出日時 2021-06-04 20:27:00
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 783 ms / 3,000 ms
コード長 3,732 bytes
コンパイル時間 290 ms
コンパイル使用メモリ 82,128 KB
実行使用メモリ 259,336 KB
最終ジャッジ日時 2024-11-19 09:02:48
合計ジャッジ時間 11,021 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
from sys import exit, stdin
from collections import deque, defaultdict
from copy import deepcopy
from bisect import bisect_left, bisect_right, insort_left, insort_right
from heapq import heapify, heappop, heappush
from itertools import product, permutations, combinations, combinations_with_replacement
from functools import reduce
from math import gcd, sin, cos, tan, asin, acos, atan, atan2, degrees, radians, ceil, floor
from math import pi as PI
from random import randint
# from decimal import Decimal
sys.setrecursionlimit(500000)
INF = (1<<61)-1
EPS = 1e-10
# MOD = 10**9+7
MOD = 998244353
def input():
return stdin.readline()[:-1]
def intput():
return int(stdin.readline())
def minput():
return stdin.readline()[:-1].split()
def linput():
return stdin.readline()[:-1].split()
def mint():
return map(int,stdin.readline().split())
def lint():
return list(map(int,stdin.readline().split()))
def ilint():
return int(stdin.readline()), list(map(int,stdin.readline().split()))
def lcm(x,y):
return x*y//gcd(x,y)
def lgcd(l):
return reduce(gcd,l)
def llcm(l):
return reduce(lcm,l)
def powmod(n,i,mod=MOD):
return pow(n,mod-1+i,mod) if i<0 else pow(n,i,mod)
def div2(x):
return x.bit_length()
def div10(x):
return len(str(x))-(x==0)
def popcount(x):
return bin(x).count('1')
def digit(x,i,max_len=None):
s = str(x)
if max_len:
i -= max_len-len(s)
return int(s[i-1]) if i>0 else 0
def digitsum(x):
ans = 0
for i in range(div10(x)):
ans += digit(x,i+1)
return ans
class counter(defaultdict):
def __init__(self, *args):
super().__init__(int)
def add(self,x,d=1):
self[x] += d
def to_list(self):
l = []
for x in sorted(self.keys()):
l.extend([x]*self[x])
return l
def pf(x,mode='set'):
C = counter()
p = 2
while x>1:
k = 0
while x%p==0:
x //= p
k += 1
if k>0:
C.add(p,k)
p = p+2-(p==2) if p*p<x else x
if mode=='counter':
return C
S = set([1])
for k in C:
T = deepcopy(S)
for x in T:
for i in range(1,C[k]+1):
S.add(x*(k**i))
if mode=='set':
return S
if mode=='list':
return sorted(S)
def isprime(x):
if x<2:
return False
return len(pf(x,'set'))==2
def matmul(A, B):
# import numpy
A1, A2 = A >> 15, A & (1 << 15) - 1
B1, B2 = B >> 15, B & (1 << 15) - 1
X = np.dot(A1, B1) % MOD
Y = np.dot(A2, B2)
Z = np.dot(A1 + A2, B1 + B2) - X - Y
return ((X << 30) + (Z << 15) + Y) % MOD
def zash(S):
lis = sorted(S)
dic = {}
for i,x in enumerate(lis):
dic[x] = i
return lis, dic
def pr(*x):
print(x[0],end='') if len(x) else print('')
def lprint(l):
for x in l:
print(x)
def ston(c, c0='a'):
return ord(c)-ord(c0)
def ntos(x, c0='a'):
return chr(x+ord(c0))
def judge(x, l=['Yes', 'No']):
print(l[0] if x else l[1])
######################################################
l=[1]*(10**6+1)
P=[]
for x in range(2,10**6+1):
if l[x]:
P.append(x)
tmp=x
while tmp<=10**6:
l[tmp]=0
tmp+=x
N=intput()
ans=1
for p in P:
if p>=N:
break
if p*p>N:
ans*=p
ans%=MOD
if not N%p and N>p:
ans*=p
ans%=MOD
#print(p,1)
continue
cnt=[0]*N
s=p
while s<N:
tmp=s
while tmp<N:
cnt[tmp]+=1
tmp+=s
s*=p
tmp=0
for i in range(1,N//2+1):
tmp=max(tmp,cnt[i]+cnt[N-i])
ans*=powmod(p,tmp)
#print(p,tmp)
ans%=MOD
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0