結果
| 問題 |
No.1529 Constant Lcm
|
| コンテスト | |
| ユーザー |
Ogtsn99
|
| 提出日時 | 2021-06-04 22:10:55 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 6,320 bytes |
| コンパイル時間 | 2,423 ms |
| コンパイル使用メモリ | 208,492 KB |
| 最終ジャッジ日時 | 2025-01-22 01:20:57 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 9 TLE * 15 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i, n) for(int (i)=0;(i)<(n);(i)++)
#define rrep(i, n) for(int (i)=((n)-1);(i)>=0;(i)--)
#define itn int
#define miele(v) min_element(v.begin(), v.end())
#define maele(v) max_element(v.begin(), v.end())
#define SUM(v) accumulate(v.begin(), v.end(), 0LL)
#define lb(a, key) lower_bound(a.begin(),a.end(),key)
#define ub(a, key) upper_bound(a.begin(),a.end(),key)
#define COUNT(a, key) count(a.begin(), a.end(), key)
#define BITCOUNT(x) __builtin_popcount(x)
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define F first
#define S second
using P = pair<int, int>;
using WeightedGraph = vector<vector<P>>;
using UnWeightedGraph = vector<vector<int>>;
using Real = long double;
using Point = complex<Real>; //Point and Vector2d is the same!
// p.real() or real(p) -> x軸, p.imag() or imag(p) -> y軸
using Vector2d = complex<Real>;
const int MOD = 998244353;
const long long INF = 1LL << 60;
const double EPS = 1e-15;
const double PI = 3.14159265358979323846;
template<typename T>
int getIndexOfLowerBound(vector<T> &v, T x) {
return lower_bound(v.begin(), v.end(), x) - v.begin();
}
template<typename T>
int getIndexOfUpperBound(vector<T> &v, T x) {
return upper_bound(v.begin(), v.end(), x) - v.begin();
}
template<class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#define repi(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
istream &operator>>(istream &is, Point &p) {
Real a, b;
is >> a >> b;
p = Point(a, b);
return is;
}
template<typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p_var) {
is >> p_var.first >> p_var.second;
return is;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &vec) {
for (T &x : vec) is >> x;
return is;
}
template<typename T, typename U>
ostream &operator<<(ostream &os, pair<T, U> &pair_var) {
os << pair_var.first << ' ' << pair_var.second;
return os;
}
template<typename T>
ostream &operator<<(ostream &os, vector<T> &vec) {
for (int i = 0; i < vec.size(); i++)
os << vec[i] << ' ';
return os;
}
template<typename T, typename U>
ostream &operator<<(ostream &os, vector<pair<T, U>> &vec) {
for (int i = 0; i < vec.size(); i++)
os << vec[i] << '\n';
return os;
}
template<typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &df) {
for (auto &vec : df) os << vec;
return os;
}
template<typename T, typename U>
ostream &operator<<(ostream &os, map<T, U> &map_var) {
repi(itr, map_var) {
os << *itr << ' ';
itr++;
itr--;
}
return os;
}
template<typename T>
ostream &operator<<(ostream &os, set<T> &set_var) {
repi(itr, set_var) {
os << *itr << ' ';
itr++;
itr--;
}
return os;
}
void print() { cout << endl; }
template<class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
cout << head;
if (sizeof...(tail) != 0) cout << " ";
print(forward<Tail>(tail)...);
}
long long gcd(long long a,long long b)
{
if (a%b==0) return(b);
else return(gcd(b,a%b));
}
long long lcm(long long a,long long b){
long long g = gcd(a,b);
return a / g * b;
}
struct Miller{
const vector<long long> v = { 2 , 7 , 61 }; // < 4,759,123,141
// x^k (mod m)
long long modpow( long long x, long long k, long long m ){
long long res = 1;
while( k ){
if( k & 1 ){
res = res * x % m;
}
k /= 2;
x = x * x % m;
}
return res;
}
// check if n is prime
bool check( long long n ){
if( n < 2 ){
return false;
}
long long d = n - 1;
long long s = 0;
while( d % 2 == 0 ){
d /= 2;
s++;
}
for( long long a : v ){
if( a == n ){
return true;
}
if( modpow( a , d , n ) != 1 ){
bool ok = true;
for( long long r = 0; r < s; r++ ){
if( modpow( a, d * (1LL << r), n ) == n-1 ){
ok = false;
break;
}
}
if( ok ){
return false;
}
}
}
return true;
}
};
struct Rho{
mt19937 mt;
Miller miller;
long long c;
Rho(){
mt.seed( clock() );
}
inline long long f( long long x, long long n ){
return ( x * x + c ) % n;
}
long long check( long long n ){
if( n == 4 ){
return 2;
}
c = mt() % n;
long long x = mt() % n;
long long y = x;
long long d = 1;
while( d == 1 ){
x = f(x, n);
y = f(f(y,n),n);
d = gcd( abs(x-y), n );
}
if( d == n ){
return -1;
}
return d;
}
vector<long long> factor( long long n ){
if( n <= 1 ){
return {};
}
if( miller.check( n ) ){
return { n };
}
long long res = -1;
while( res == -1 ){
res = check( n );
}
vector<long long> fa = factor( res );
vector<long long> fb = factor( n / res );
fa.insert( fa.end() , fb.begin(), fb.end() );
return fa;
}
};
Rho rho;
int mpow(int x, int n) {
int ret = 1;
while(n > 0) {
if(n & 1) (ret *= x) %= MOD;
(x *= x) %= MOD;
n >>= 1;
}
return ret;
}
signed main(void) { cin.tie(0); ios::sync_with_stdio(false);
int n; cin>>n;
int cnt = 1;
map <int, int> ma;
for (int i = n-1; i >= 1; --i) {
int num = cnt*i;
auto tmp = rho.factor(num);
map<int, int> ma_tmp;
for (int j = 0; j < tmp.size(); ++j) {
ma_tmp[tmp[j]]++;
}
for (auto p : ma_tmp) {
chmax(ma[p.F], p.S);
}
cnt++;
}
int ans = 1;
for (auto p : ma) {
ans *= mpow(p.F, p.S);
ans %= MOD;
}
print(ans);
}
Ogtsn99