結果

問題 No.1533 Don't be Negative!
ユーザー chocoruskchocorusk
提出日時 2021-06-04 22:15:38
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 614 ms / 8,000 ms
コード長 20,755 bytes
コンパイル時間 3,200 ms
コンパイル使用メモリ 228,292 KB
実行使用メモリ 25,332 KB
最終ジャッジ日時 2024-04-30 03:15:18
合計ジャッジ時間 17,171 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 18 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 144 ms
9,408 KB
testcase_12 AC 139 ms
8,840 KB
testcase_13 AC 33 ms
5,376 KB
testcase_14 AC 67 ms
6,072 KB
testcase_15 AC 140 ms
8,812 KB
testcase_16 AC 249 ms
13,424 KB
testcase_17 AC 34 ms
5,376 KB
testcase_18 AC 237 ms
13,652 KB
testcase_19 AC 67 ms
6,592 KB
testcase_20 AC 284 ms
13,716 KB
testcase_21 AC 116 ms
7,872 KB
testcase_22 AC 147 ms
9,936 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 145 ms
9,748 KB
testcase_25 AC 286 ms
14,136 KB
testcase_26 AC 69 ms
6,528 KB
testcase_27 AC 145 ms
9,896 KB
testcase_28 AC 250 ms
14,940 KB
testcase_29 AC 236 ms
13,708 KB
testcase_30 AC 596 ms
24,620 KB
testcase_31 AC 27 ms
5,376 KB
testcase_32 AC 115 ms
7,908 KB
testcase_33 AC 305 ms
16,476 KB
testcase_34 AC 16 ms
5,376 KB
testcase_35 AC 2 ms
5,376 KB
testcase_36 AC 295 ms
14,460 KB
testcase_37 AC 72 ms
6,500 KB
testcase_38 AC 596 ms
24,544 KB
testcase_39 AC 290 ms
16,688 KB
testcase_40 AC 290 ms
17,080 KB
testcase_41 AC 289 ms
16,104 KB
testcase_42 AC 592 ms
24,084 KB
testcase_43 AC 292 ms
16,748 KB
testcase_44 AC 252 ms
15,116 KB
testcase_45 AC 287 ms
16,040 KB
testcase_46 AC 287 ms
16,168 KB
testcase_47 AC 590 ms
24,060 KB
testcase_48 AC 290 ms
16,928 KB
testcase_49 AC 291 ms
16,940 KB
testcase_50 AC 603 ms
25,148 KB
testcase_51 AC 605 ms
25,080 KB
testcase_52 AC 319 ms
16,604 KB
testcase_53 AC 614 ms
25,200 KB
testcase_54 AC 600 ms
25,204 KB
testcase_55 AC 600 ms
25,332 KB
testcase_56 AC 607 ms
25,276 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using int64 = long long;
//const int mod = 1e9 + 7;
const int mod = 998244353;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}


static constexpr uint32_t mul_inv(uint32_t n, int e = 5, uint32_t x = 1) {
  return e == 0 ? x : mul_inv(n, e - 1, x * (2 - x * n));
}

template< uint32_t mod, bool fast = false >
struct ModInt2 {
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 inv = mul_inv(mod);
  static constexpr u32 r2 = -uint64_t(mod) % mod;

  uint32_t x;

  ModInt2() : x(0) {}

  ModInt2(const int64_t &y)
      : x(reduce(u64(fast ? y : (y >= 0 ? y % mod : (mod - (-y) % mod) % mod)) * r2)) {}

  u32 reduce(const u64 &w) const {
    return u32(w >> 32) + mod - u32((u64(u32(w) * inv) * mod) >> 32);
  }

  ModInt2 &operator+=(const ModInt2 &p) {
    if(int(x += p.x - 2 * mod) < 0) x += 2 * mod;
    return *this;
  }

  ModInt2 &operator-=(const ModInt2 &p) {
    if(int(x -= p.x) < 0) x += 2 * mod;
    return *this;
  }

  ModInt2 &operator*=(const ModInt2 &p) {
    x = reduce(uint64_t(x) * p.x);
    return *this;
  }

  ModInt2 &operator/=(const ModInt2 &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt2 operator-() const { return ModInt2() - *this; }

  ModInt2 operator+(const ModInt2 &p) const { return ModInt2(*this) += p; }

  ModInt2 operator-(const ModInt2 &p) const { return ModInt2(*this) -= p; }

  ModInt2 operator*(const ModInt2 &p) const { return ModInt2(*this) *= p; }

  ModInt2 operator/(const ModInt2 &p) const { return ModInt2(*this) /= p; }

  bool operator==(const ModInt2 &p) const { return get() == p.get(); }

  bool operator!=(const ModInt2 &p) const { return get() != p.get(); }

  int get() const { return reduce(x) % mod; }

  ModInt2 pow(int64_t n) const {
    ModInt2 ret(1), mul(*this);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  ModInt2 inverse() const {
    return pow(mod - 2);
  }

  friend ostream &operator<<(ostream &os, const ModInt2 &p) {
    return os << p.get();
  }

  friend istream &operator>>(istream &is, ModInt2 &a) {
    int64_t t;
    is >> t;
    a = ModInt2< mod, fast >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt2< mod >;


template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {

  vector< Mint > dw, idw;
  int max_base;
  Mint root;

  NumberTheoreticTransformFriendlyModInt() {
    const unsigned mod = Mint::get_mod();
    assert(mod >= 3 && mod % 2 == 1);
    auto tmp = mod - 1;
    max_base = 0;
    while(tmp % 2 == 0) tmp >>= 1, max_base++;
    root = 2;
    while(root.pow((mod - 1) >> 1) == 1) root += 1;
    assert(root.pow(mod - 1) == 1);
    dw.resize(max_base);
    idw.resize(max_base);
    for(int i = 0; i < max_base; i++) {
      dw[i] = -root.pow((mod - 1) >> (i + 2));
      idw[i] = Mint(1) / dw[i];
    }
  }

  void ntt(vector< Mint > &a) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = n; m >>= 1;) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j] * w;
          a[i] = x + y, a[j] = x - y;
        }
        w *= dw[__builtin_ctz(++k)];
      }
    }
  }

  void intt(vector< Mint > &a, bool f = true) {
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    assert(__builtin_ctz(n) <= max_base);
    for(int m = 1; m < n; m *= 2) {
      Mint w = 1;
      for(int s = 0, k = 0; s < n; s += 2 * m) {
        for(int i = s, j = s + m; i < s + m; ++i, ++j) {
          auto x = a[i], y = a[j];
          a[i] = x + y, a[j] = (x - y) * w;
        }
        w *= idw[__builtin_ctz(++k)];
      }
    }
    if(f) {
      Mint inv_sz = Mint(1) / n;
      for(int i = 0; i < n; i++) a[i] *= inv_sz;
    }
  }

  vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    Mint inv_sz = Mint(1) / sz;
    for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
    intt(a, false);
    a.resize(need);
    return a;
  }
};

/**
 * @brief Formal-Power-Series(形式的冪級数)
 */
template< typename T >
struct FormalPowerSeries : vector< T > {
  using vector< T >::vector;
  using P = FormalPowerSeries;

  using MULT = function< vector< T >(P, P) >;
  using FFT = function< void(P &) >;
  using SQRT = function< T(T) >;

  static MULT &get_mult() {
    static MULT mult = nullptr;
    return mult;
  }

  static void set_mult(MULT f) {
    get_mult() = f;
  }

  static FFT &get_fft() {
    static FFT fft = nullptr;
    return fft;
  }

  static FFT &get_ifft() {
    static FFT ifft = nullptr;
    return ifft;
  }

  static void set_fft(FFT f, FFT g) {
    get_fft() = f;
    get_ifft() = g;
    if(get_mult() == nullptr) {
      auto mult = [&](P a, P b) {
        int need = a.size() + b.size() - 1;
        int nbase = 1;
        while((1 << nbase) < need) nbase++;
        int sz = 1 << nbase;
        a.resize(sz, T(0));
        b.resize(sz, T(0));
        get_fft()(a);
        get_fft()(b);
        for(int i = 0; i < sz; i++) a[i] *= b[i];
        get_ifft()(a);
        a.resize(need);
        return a;
      };
      set_mult(mult);
    }
  }

  static SQRT &get_sqrt() {
    static SQRT sqr = nullptr;
    return sqr;
  }

  static void set_sqrt(SQRT sqr) {
    get_sqrt() = sqr;
  }

  void shrink() {
    while(this->size() && this->back() == T(0)) this->pop_back();
  }

  P operator+(const P &r) const { return P(*this) += r; }

  P operator+(const T &v) const { return P(*this) += v; }

  P operator-(const P &r) const { return P(*this) -= r; }

  P operator-(const T &v) const { return P(*this) -= v; }

  P operator*(const P &r) const { return P(*this) *= r; }

  P operator*(const T &v) const { return P(*this) *= v; }

  P operator/(const P &r) const { return P(*this) /= r; }

  P operator%(const P &r) const { return P(*this) %= r; }

  P &operator+=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  P &operator+=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  P &operator-=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
    shrink();
    return *this;
  }

  P &operator-=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] -= r;
    shrink();
    return *this;
  }

  P &operator*=(const T &v) {
    const int n = (int) this->size();
    for(int k = 0; k < n; k++) (*this)[k] *= v;
    return *this;
  }

  P &operator*=(const P &r) {
    if(this->empty() || r.empty()) {
      this->clear();
      return *this;
    }
    assert(get_mult() != nullptr);
    auto ret = get_mult()(*this, r);
    return *this = P(begin(ret), end(ret));
  }

  P &operator%=(const P &r) {
    return *this -= *this / r * r;
  }

  P operator-() const {
    P ret(this->size());
    for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  P &operator/=(const P &r) {
    if(this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
  }

  P dot(P r) const {
    P ret(min(this->size(), r.size()));
    for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  P pre(int sz) const {
    return P(begin(*this), begin(*this) + min((int) this->size(), sz));
  }

  P operator>>(int sz) const {
    if(this->size() <= sz) return {};
    P ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  P operator<<(int sz) const {
    P ret(*this);
    ret.insert(ret.begin(), sz, T(0));
    return ret;
  }

  P rev(int deg = -1) const {
    P ret(*this);
    if(deg != -1) ret.resize(deg, T(0));
    reverse(begin(ret), end(ret));
    return ret;
  }

  T operator()(T x) const {
    T r = 0, w = 1;
    for(auto &v : *this) {
      r += w * v;
      w *= x;
    }
    return r;
  }

  P diff() const;

  P integral() const;

  // F(0) must not be 0
  P inv_fast() const;

  P inv(int deg = -1) const;

  // F(0) must be 1
  P log(int deg = -1) const;

  P sqrt(int deg = -1) const;

  // F(0) must be 0
  P exp_fast(int deg = -1) const;

  P exp(int deg = -1) const;

  P pow(int64_t k, int deg = -1) const;

  P mod_pow(int64_t k, P g) const;
};


/**
 * @brief Integral ($\int f(x) dx$)
 * @docs docs/integral.md
 */
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::integral() const {
  const int n = (int) this->size();
  P ret(n + 1);
  ret[0] = T(0);
  vector< T > invs(n + 1);
  invs[1] = 1;
  for(int i = 2; i <= n; i++) invs[i] = invs[T::get_mod() % i] * (T::get_mod() - T::get_mod() / i);
  for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] * invs[i + 1];
  return ret;
}

/**
 * @brief Diff ($f'(x)$)
 * @docs docs/diff.md
 */
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::diff() const {
  const int n = (int) this->size();
  P ret(max(0, n - 1));
  for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
  return ret;
}

/**
 * @brief Inv ($\frac {1} {f(x)}$)
 */
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::inv_fast() const {
  assert(((*this)[0]) != T(0));

  const int n = (int) this->size();
  P res{T(1) / (*this)[0]};

  for(int d = 1; d < n; d <<= 1) {
    P f(2 * d), g(2 * d);
    for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];
    for(int j = 0; j < d; j++) g[j] = res[j];
    get_fft()(f);
    get_fft()(g);
    for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
    get_ifft()(f);
    for(int j = 0; j < d; j++) {
      f[j] = 0;
      f[j + d] = -f[j + d];
    }
    get_fft()(f);
    for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
    get_ifft()(f);
    for(int j = 0; j < d; j++) f[j] = res[j];
    res = f;
  }
  return res.pre(n);
}

template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::inv(int deg) const {
  assert(((*this)[0]) != T(0));
  const int n = (int) this->size();
  if(deg == -1) deg = n;
  if(get_fft() != nullptr) {
    P ret(*this);
    ret.resize(deg, T(0));
    return ret.inv_fast();
  }
  P ret({T(1) / (*this)[0]});
  for(int i = 1; i < deg; i <<= 1) {
    ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
  }
  return ret.pre(deg);
}

/**
 * @brief Log ($\log {f(x)}$)
 * @docs docs/log.md
 */
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::log(int deg) const {
  assert((*this)[0] == 1);
  const int n = (int) this->size();
  if(deg == -1) deg = n;
  return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
/**
 * @brief Exp ($e^{f(x)}$)
 * @docs docs/exp.md
 */
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::exp_fast(int deg) const {
  if(deg == -1) deg = this->size();
  assert((*this)[0] == T(0));

  P inv;
  inv.reserve(deg + 1);
  inv.push_back(T(0));
  inv.push_back(T(1));

  auto inplace_integral = [&](P &F) -> void {
    const int n = (int) F.size();
    auto mod = T::get_mod();
    while((int) inv.size() <= n) {
      int i = inv.size();
      inv.push_back((-inv[mod % i]) * (mod / i));
    }
    F.insert(begin(F), T(0));
    for(int i = 1; i <= n; i++) F[i] *= inv[i];
  };

  auto inplace_diff = [](P &F) -> void {
    if(F.empty()) return;
    F.erase(begin(F));
    T coeff = 1, one = 1;
    for(int i = 0; i < (int) F.size(); i++) {
      F[i] *= coeff;
      coeff += one;
    }
  };

  P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
  for(int m = 2; m < deg; m *= 2) {
    auto y = b;
    y.resize(2 * m);
    get_fft()(y);
    z1 = z2;
    P z(m);
    for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
    get_ifft()(z);
    fill(begin(z), begin(z) + m / 2, T(0));
    get_fft()(z);
    for(int i = 0; i < m; ++i) z[i] *= -z1[i];
    get_ifft()(z);
    c.insert(end(c), begin(z) + m / 2, end(z));
    z2 = c;
    z2.resize(2 * m);
    get_fft()(z2);
    P x(begin(*this), begin(*this) + min< int >(this->size(), m));
    inplace_diff(x);
    x.push_back(T(0));
    get_fft()(x);
    for(int i = 0; i < m; ++i) x[i] *= y[i];
    get_ifft()(x);
    x -= b.diff();
    x.resize(2 * m);
    for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0);
    get_fft()(x);
    for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
    get_ifft()(x);
    x.pop_back();
    inplace_integral(x);
    for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i];
    fill(begin(x), begin(x) + m, T(0));
    get_fft()(x);
    for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];
    get_ifft()(x);
    b.insert(end(b), begin(x) + m, end(x));
  }
  return P{begin(b), begin(b) + deg};
}

template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::exp(int deg) const {
  assert((*this)[0] == T(0));
  const int n = (int) this->size();
  if(deg == -1) deg = n;
  if(get_fft() != nullptr) {
    P ret(*this);
    ret.resize(deg, T(0));
    return ret.exp_fast(deg);
  }
  P ret({T(1)});
  for(int i = 1; i < deg; i <<= 1) {
    ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
  }
  return ret.pre(deg);
}

/**
 * @brief Pow ($f(x)^k$)
 */
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::pow(int64_t k, int deg) const {
  const int n = (int) this->size();
  if(deg == -1) deg = n;
  for(int i = 0; i < n; i++) {
    if((*this)[i] != T(0)) {
      T rev = T(1) / (*this)[i];
      P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
      if(i * k > deg) return P(deg, T(0));
      ret = (ret << (i * k)).pre(deg);
      if(ret.size() < deg) ret.resize(deg, T(0));
      return ret;
    }
  }
  return *this;
}

const int MOD = 998244353;
using mint = ModInt2< MOD, true >;


/**
 * @brief Scanner(高速入力)
 */
struct Scanner {
public:

  explicit Scanner(FILE *fp) : fp(fp) {}

  template< typename T, typename... E >
  void read(T &t, E &... e) {
    read_single(t);
    read(e...);
  }

private:
  static constexpr size_t line_size = 1 << 16;
  static constexpr size_t int_digits = 20;
  char line[line_size + 1] = {};
  FILE *fp = nullptr;
  char *st = line;
  char *ed = line;

  void read() {}

  static inline bool is_space(char c) {
    return c <= ' ';
  }

  void reread() {
    ptrdiff_t len = ed - st;
    memmove(line, st, len);
    char *tmp = line + len;
    ed = tmp + fread(tmp, 1, line_size - len, fp);
    *ed = 0;
    st = line;
  }

  void skip_space() {
    while(true) {
      if(st == ed) reread();
      while(*st && is_space(*st)) ++st;
      if(st != ed) return;
    }
  }

  template< typename T, enable_if_t< is_integral< T >::value, int > = 0 >
  void read_single(T &s) {
    skip_space();
    if(st + int_digits >= ed) reread();
    bool neg = false;
    if(is_signed< T >::value && *st == '-') {
      neg = true;
      ++st;
    }
    typename make_unsigned< T >::type y = *st++ - '0';
    while(*st >= '0') {
      y = 10 * y + *st++ - '0';
    }
    s = (neg ? -y : y);
  }

  template< typename T, enable_if_t< is_same< T, string >::value, int > = 0 >
  void read_single(T &s) {
    s = "";
    skip_space();
    while(true) {
      char *base = st;
      while(*st && !is_space(*st)) ++st;
      s += string(base, st);
      if(st != ed) return;
      reread();
    }
  }

  template< typename T >
  void read_single(vector< T > &s) {
    for(auto &d : s) read(d);
  }
};

/**
 * @brief Printer(高速出力)
 */
struct Printer {
public:
  explicit Printer(FILE *fp) : fp(fp) {}

  ~Printer() { flush(); }

  template< bool f = false, typename T, typename... E >
  void write(const T &t, const E &... e) {
    if(f) write_single(' ');
    write_single(t);
    write< true >(e...);
  }

  template< typename... T >
  void writeln(const T &...t) {
    write(t...);
    write_single('\n');
  }

  void flush() {
    fwrite(line, 1, st - line, fp);
    st = line;
  }

private:
  FILE *fp = nullptr;
  static constexpr size_t line_size = 1 << 16;
  static constexpr size_t int_digits = 20;
  char line[line_size + 1] = {};
  char small[32] = {};
  char *st = line;

  template< bool f = false >
  void write() {}

  void write_single(const char &t) {
    if(st + 1 >= line + line_size) flush();
    *st++ = t;
  }

  template< typename T, enable_if_t< is_integral< T >::value, int > = 0 >
  void write_single(T s) {
    if(st + int_digits >= line + line_size) flush();
    if(s == 0) {
      write_single('0');
      return;
    }
    if(s < 0) {
      write_single('-');
      s = -s;
    }
    char *mp = small + sizeof(small);
    typename make_unsigned< T >::type y = s;
    size_t len = 0;
    while(y > 0) {
      *--mp = y % 10 + '0';
      y /= 10;
      ++len;
    }
    memmove(st, mp, len);
    st += len;
  }

  void write_single(const string &s) {
    for(auto &c : s) write_single(c);
  }

  void write_single(const char *s) {
    while(*s != 0) write_single(*s++);
  }

  template< typename T >
  void write_single(const vector< T > &s) {
    for(size_t i = 0; i < s.size(); i++) {
      if(i) write_single(' ');
      write_single(s[i]);
    }
  }
};


int main() {
  NumberTheoreticTransformFriendlyModInt< mint > ntt;
  using FPS = FormalPowerSeries< mint >;
  FPS::set_fft([&](FPS &a) { ntt.ntt(a); }, [&](FPS &a) { ntt.intt(a); });

  Scanner input(stdin);
  Printer output(stdout);

  int n, m, k;
  cin>>n>>m>>k;
  if(m==1 && k==1){
      cout<<0<<endl;
      return 0;
  }

  FPS f(2*m+1), f0(2*m+1), f2(m*n+1);
  int m1=2*m-1;
  if(k==0) m1++;
    for(int i=-m; i<=m; i++){
        if(abs(i)!=k){
            f[i+m]=mint(m1).inverse();
        }
    }
    f0[m]=1;
    f2[m*n]=1;
    auto f1=f0-f;
    auto g2=f1*f, g3=f*f, g4=f1*f1;
    for(auto &x:g2) x*=mint(n);
    g2-=g3;
    g2*=f2;
    // for(auto x:f) cout<<x<<" ";
    // cout<<endl;
    auto g1=FPS(1), fp=f;
    g1[0]=1;
    int n1=n+2;
    while(n1){
        if(n1&1){
            g1*=fp;
        }
        fp*=fp;
        n1>>=1;
    }
    // for(auto x:g1) cout<<x<<" ";
    // cout<<endl;
    g1+=g2;
    int l=m*n;
    int t=0;
    while(g4[t]==mint(0)) t++, l++;
    FPS g5((int)g4.size()-t);
    for(int i=0; i<(int)g4.size()-t; i++) g5[i]=g4[i+t];
    while(g5.back()==mint(0)) g5.pop_back();
    // for(auto x:g1) cout<<x<<" ";
    // cout<<endl;
    // for(auto x:g5) cout<<x<<" ";
    // cout<<endl;
    g1/=g5;
    //g1=FPS.div(g1, g5);
    // for(auto x:g1) cout<<x<<" ";
    // cout<<endl;
    mint ans=0;
    for(int i=0; i<l; i++) ans+=g1[i];
    ans*=mint(m1).pow(n);
    cout<<ans<<endl;
}
0