結果

問題 No.1529 Constant Lcm
ユーザー FF256grhyFF256grhy
提出日時 2021-06-04 22:23:16
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 28 ms / 3,000 ms
コード長 7,780 bytes
コンパイル時間 2,484 ms
コンパイル使用メモリ 220,116 KB
実行使用メモリ 7,628 KB
最終ジャッジ日時 2024-11-19 20:15:27
合計ジャッジ時間 3,564 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 26 ms
7,224 KB
testcase_11 AC 11 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 23 ms
6,820 KB
testcase_14 AC 14 ms
5,520 KB
testcase_15 AC 16 ms
5,776 KB
testcase_16 AC 12 ms
5,248 KB
testcase_17 AC 7 ms
5,248 KB
testcase_18 AC 8 ms
5,248 KB
testcase_19 AC 14 ms
5,560 KB
testcase_20 AC 28 ms
7,496 KB
testcase_21 AC 28 ms
7,620 KB
testcase_22 AC 28 ms
7,628 KB
testcase_23 AC 28 ms
7,500 KB
testcase_24 AC 28 ms
7,500 KB
testcase_25 AC 28 ms
7,624 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); i++)
#define incIX(i, l, r) for(LL i = (l)    ; i <  (r); i++)
#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incXX(i, l, r) for(LL i = (l) + 1; i <  (r); i++)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); i--)
#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decXI(i, l, r) for(LL i = (r)    ; i >  (l); i--)
#define decXX(i, l, r) for(LL i = (r) - 1; i >  (l); i--)
#define inc(i, n)  incIX(i, 0, n)
#define dec(i, n)  decIX(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };
auto inIX = [](auto x, auto l, auto r) { return (l <= x && x <  r); };
auto inXI = [](auto x, auto l, auto r) { return (l <  x && x <= r); };
auto inXX = [](auto x, auto l, auto r) { return (l <  x && x <  r); };
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(c) c.begin(), c.end()
#define RALL(c) c.rbegin(), c.rend()
#define RV(c) reverse(ALL(c))
#define SC static_cast
#define SI(c) SC<int>(c.size())
#define SL(c) SC<LL >(c.size())
#define RF(e, c) for(auto & e: c)
#define SF(c, ...) for(auto & [__VA_ARGS__]: c)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
auto * IS = & cin;
auto * OS = & cout;
array<string, 3> SEQ = { "", " ", "" };
// input
template<typename T> T in() { T a; (* IS) >> a; return a; }
// input: tuple
template<int I, typename U> void tin_(istream & is, U & t) {
	if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }
}
template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }
template<typename ... T> auto tin() { return in<tuple<T ...>>(); }
// input: array
template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }
template<typename T, size_t N> auto ain() { return in<array<T, N>>(); }
// input: multi-dimensional vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
	vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input: multi-column (tuple<vector>)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
	get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
	tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
// output
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out  = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", ""  , ""  , a ...); };
// output: multi-dimensional vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
	os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
	inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }
template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS)      << flush; }

// ---- ----

template<LL M> class ModInt {
private:
	LL v;
	pair<LL, LL> ext_gcd(LL a, LL b) {
		if(b == 0) { assert(a == 1); return { 1, 0 }; }
		auto p = ext_gcd(b, a % b);
		return { p.SE, p.FI - (a / b) * p.SE };
	}
public:
	ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }
	LL val() { return v; }
	static LL mod() { return M; }
	ModInt inv() { return ext_gcd(M, v).SE; }
	ModInt exp(LL b) {
		ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }
		while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }
		return p;
	}
	friend bool      operator< (ModInt    a, ModInt   b) { return (a.v <  b.v); }
	friend bool      operator> (ModInt    a, ModInt   b) { return (a.v >  b.v); }
	friend bool      operator<=(ModInt    a, ModInt   b) { return (a.v <= b.v); }
	friend bool      operator>=(ModInt    a, ModInt   b) { return (a.v >= b.v); }
	friend bool      operator==(ModInt    a, ModInt   b) { return (a.v == b.v); }
	friend bool      operator!=(ModInt    a, ModInt   b) { return (a.v != b.v); }
	friend ModInt    operator+ (ModInt    a            ) { return ModInt(+a.v); }
	friend ModInt    operator- (ModInt    a            ) { return ModInt(-a.v); }
	friend ModInt    operator+ (ModInt    a, ModInt   b) { return ModInt(a.v + b.v); }
	friend ModInt    operator- (ModInt    a, ModInt   b) { return ModInt(a.v - b.v); }
	friend ModInt    operator* (ModInt    a, ModInt   b) { return ModInt(a.v * b.v); }
	friend ModInt    operator/ (ModInt    a, ModInt   b) { return a * b.inv(); }
	friend ModInt    operator^ (ModInt    a, LL       b) { return a.exp(b); }
	friend ModInt  & operator+=(ModInt  & a, ModInt   b) { return (a = a + b); }
	friend ModInt  & operator-=(ModInt  & a, ModInt   b) { return (a = a - b); }
	friend ModInt  & operator*=(ModInt  & a, ModInt   b) { return (a = a * b); }
	friend ModInt  & operator/=(ModInt  & a, ModInt   b) { return (a = a / b); }
	friend ModInt  & operator^=(ModInt  & a, LL       b) { return (a = a ^ b); }
	friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; }
	friend ostream & operator<<(ostream & s, ModInt   b) { return (s << b.v); }
};

// ----

using MI = ModInt<998244353>;

auto prime_table = [](LL n) -> vector<bool> {
	assert(n >= 1);
	vector<bool> p(n + 1, true);
	p[0] = p[1] = false;
	for(LL i = 2; i * i <= n; i++) {
		if(p[i]) { for(LL j = i * i; j <= n; j += i) { p[j] = false; } }
	}
	return p;
};

auto prime_list = [](LL n) -> vector<LL> {
	auto t = prime_table(n);
	vector<LL> p;
	inc1(i, n) { if(t[i]) { p.PB(i); } }
	return p;
};

vector<pair<LL, LL>> prime_factorization(LL x) {
	assert(x > 0);
	vector<pair<LL, LL>> f;
	for(LL i = 2; i <= x; i++) {
		if(i * i > x) { i = x; }
		if(x % i == 0) {
			f.EB(i, 0);
			while(x % i == 0) { f.back().SE++; x /= i; }
		}
	}
	return f;
}

#define LB(v, x) (lower_bound(ALL(v), x) - v.begin())
#define UB(v, x) (upper_bound(ALL(v), x) - v.begin())

int main() {
	auto n = in<LL>();
	
	auto ps = prime_list(n - 1);
	map<int, int> mp;
	RF(p, ps) {
		for(LL e = p; e < n; e *= p) { mp[p]++; }
	}
	
	auto pf = prime_factorization(n);
	SF(pf, p, e) {
		vector<LL> ex;
		for(LL pp = 1; pp <= n; pp *= p) { ex.PB(pp); }
		LL pp = 1;
		incII(i, 0, e) {
			setmax(mp[p], i + UB(ex, n - pp) - 1);
			pp *= p;
		}
	}
	
	MI ans = 1;
	SF(mp, p, e) { ans *= MI(p) ^ e; }
	out(ans);
}
0