結果
問題 | No.1529 Constant Lcm |
ユーザー | stoq |
提出日時 | 2021-06-05 22:34:21 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,573 ms / 3,000 ms |
コード長 | 6,844 bytes |
コンパイル時間 | 2,504 ms |
コンパイル使用メモリ | 222,376 KB |
実行使用メモリ | 28,416 KB |
最終ジャッジ日時 | 2024-11-21 22:05:01 |
合計ジャッジ時間 | 20,006 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 38 ms
23,552 KB |
testcase_01 | AC | 39 ms
23,492 KB |
testcase_02 | AC | 37 ms
23,480 KB |
testcase_03 | AC | 36 ms
23,424 KB |
testcase_04 | AC | 37 ms
23,500 KB |
testcase_05 | AC | 39 ms
23,552 KB |
testcase_06 | AC | 37 ms
23,504 KB |
testcase_07 | AC | 40 ms
23,472 KB |
testcase_08 | AC | 38 ms
23,508 KB |
testcase_09 | AC | 41 ms
23,552 KB |
testcase_10 | AC | 1,359 ms
28,032 KB |
testcase_11 | AC | 533 ms
25,536 KB |
testcase_12 | AC | 65 ms
23,564 KB |
testcase_13 | AC | 1,165 ms
27,520 KB |
testcase_14 | AC | 705 ms
26,112 KB |
testcase_15 | AC | 788 ms
26,252 KB |
testcase_16 | AC | 616 ms
25,728 KB |
testcase_17 | AC | 339 ms
24,772 KB |
testcase_18 | AC | 368 ms
24,720 KB |
testcase_19 | AC | 755 ms
26,100 KB |
testcase_20 | AC | 1,550 ms
28,392 KB |
testcase_21 | AC | 1,527 ms
28,416 KB |
testcase_22 | AC | 1,550 ms
28,416 KB |
testcase_23 | AC | 1,536 ms
28,292 KB |
testcase_24 | AC | 1,522 ms
28,416 KB |
testcase_25 | AC | 1,573 ms
28,416 KB |
ソースコード
#define MOD_TYPE 2 #pragma region Macros #include <bits/stdc++.h> using namespace std; #if 0 #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr ld PI = acos(-1.0); constexpr ld EPS = 1e-7; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; struct io_init { io_init() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept { os << p.first << " " << p.second; return os; } #pragma endregion // -------------------------------------- #pragma region mint template <int MOD> struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) v += MOD; } constexpr int getmod() { return MOD; } constexpr Fp operator-() const noexcept { return val ? MOD - val : 0; } constexpr Fp operator+(const Fp &r) const noexcept { return Fp(*this) += r; } constexpr Fp operator-(const Fp &r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator*(const Fp &r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator/(const Fp &r) const noexcept { return Fp(*this) /= r; } constexpr Fp &operator+=(const Fp &r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp &operator-=(const Fp &r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp &operator*=(const Fp &r) noexcept { val = val * r.val % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp &operator/=(const Fp &r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator==(const Fp &r) const noexcept { return this->val == r.val; } constexpr bool operator!=(const Fp &r) const noexcept { return this->val != r.val; } friend constexpr ostream &operator<<(ostream &os, const Fp<MOD> &x) noexcept { return os << x.val; } friend constexpr istream &operator>>(istream &is, Fp<MOD> &x) noexcept { return is >> x.val; } }; Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } using mint = Fp<MOD>; template <class T> struct BiCoef { vector<T> fact_, inv_, finv_; constexpr BiCoef() { } constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) noexcept { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].getmod(); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } constexpr T C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } constexpr T P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } constexpr T H(ll n, ll k) const noexcept { return C(n + k - 1, k); } constexpr T Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; T res = 0; for (int i = 0; i < n; i++) res += C(n, i) * modpow(n - i, k) * (i & 1 ? -1 : 1); return res; } constexpr T fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } constexpr T inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } constexpr T finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef<mint> bc(200010); #pragma endregion const int MAX_N = 2e6; ll can_div[MAX_N] = {}; void init_prime() { can_div[1] = -1; for (ll i = 2; i < MAX_N; i++) { if (can_div[i] != 0) continue; for (ll j = i + i; j < MAX_N; j += i) can_div[j] = i; } } struct init_prime_ { init_prime_() { init_prime(); }; } init_prime_; inline bool is_prime(ll n) { if (n <= 1) return false; return !can_div[n]; } void factorization(int n, unordered_map<ll, int> &res) { if (n <= 1) return; if (!can_div[n]) { ++res[n]; return; } ++res[can_div[n]]; factorization(n / can_div[n], res); } void solve() { int n; cin >> n; map<ll, int> mp; for (int i = 1; i <= n - 1; i++) { unordered_map<ll, int> A, B, C; factorization(i, A); factorization(n - i, B); for (auto [p, e] : A) C[p] += e; for (auto [p, e] : B) C[p] += e; for (auto [p, e] : C) chmax(mp[p], e); } mint ans = 1; for (auto [p, e] : mp) ans *= modpow(p, e); cout << ans << "\n"; } int main() { solve(); }