結果
問題 | No.1529 Constant Lcm |
ユーザー | nephrologist |
提出日時 | 2021-06-06 13:53:02 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,881 bytes |
コンパイル時間 | 195 ms |
コンパイル使用メモリ | 81,984 KB |
実行使用メモリ | 849,344 KB |
最終ジャッジ日時 | 2024-11-22 20:34:26 |
合計ジャッジ時間 | 22,826 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | AC | 38 ms
53,120 KB |
testcase_03 | AC | 39 ms
52,992 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | MLE | - |
testcase_11 | MLE | - |
testcase_12 | WA | - |
testcase_13 | MLE | - |
testcase_14 | MLE | - |
testcase_15 | MLE | - |
testcase_16 | MLE | - |
testcase_17 | MLE | - |
testcase_18 | MLE | - |
testcase_19 | MLE | - |
testcase_20 | MLE | - |
testcase_21 | MLE | - |
testcase_22 | MLE | - |
testcase_23 | MLE | - |
testcase_24 | MLE | - |
testcase_25 | MLE | - |
ソースコード
n = int(input()) mod = 998244353 def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret # 素数列挙 def prime_list(n): d = [] is_prime = [0] * (n + 1) is_prime[2] = 1 len3 = len(is_prime[3::2]) is_prime[3::2] = [1] * (len3) for i in range(3, int(n ** 0.5) + 1, 2): if is_prime[i]: len_is = len(is_prime[i * i :: i + i]) is_prime[i * i :: i + i] = [0] * len_is for j in range(n + 1): if is_prime[j] == 1: d.append(j) return d, is_prime primes, _ = prime_list(n) jisho = {} for i in range(len(primes)): jisho[primes[i]] = i memo = [[0] * (len(primes)) for _ in range(n + 1)] sosu_set = set(primes) for i in range(2, n): temp = primeFactor(i) for key, val in temp.items(): idx = jisho[key] memo[i][idx] = max(memo[i][idx], val) ans = 1 for i in range(len(primes)): for j in range(1, n): temp = memo[j][i] + memo[n - j][i] ans *= pow(primes[i], temp, mod) ans %= mod print(ans)