結果
| 問題 |
No.1529 Constant Lcm
|
| コンテスト | |
| ユーザー |
nephrologist
|
| 提出日時 | 2021-06-06 14:11:58 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 2,375 ms / 3,000 ms |
| コード長 | 2,977 bytes |
| コンパイル時間 | 182 ms |
| コンパイル使用メモリ | 81,948 KB |
| 実行使用メモリ | 118,184 KB |
| 最終ジャッジ日時 | 2024-11-22 20:54:22 |
| 合計ジャッジ時間 | 25,411 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 24 |
ソースコード
from collections import Counter
n = int(input())
mod = 998244353
def gcd(a, b):
while b:
a, b = b, a % b
return a
def isPrimeMR(n):
d = n - 1
d = d // (d & -d)
L = [2]
for a in L:
t = d
y = pow(a, t, n)
if y == 1:
continue
while y != n - 1:
y = (y * y) % n
if y == 1 or t == n - 1:
return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g):
return g
elif isPrimeMR(n // g):
return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i * i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k:
ret[i] = k
i += 1 + i % 2
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1:
ret[n] = 1
if rhoFlg:
ret = {x: ret[x] for x in sorted(ret)}
return ret
# 素数列挙
def prime_list(n):
d = []
is_prime = [0] * (n + 1)
is_prime[2] = 1
len3 = len(is_prime[3::2])
is_prime[3::2] = [1] * (len3)
for i in range(3, int(n ** 0.5) + 1, 2):
if is_prime[i]:
len_is = len(is_prime[i * i :: i + i])
is_prime[i * i :: i + i] = [0] * len_is
for j in range(n + 1):
if is_prime[j] == 1:
d.append(j)
return d, is_prime
primes, _ = prime_list(n)
jisho = {}
for i in range(len(primes)):
jisho[primes[i]] = i
memo = [0] * (len(primes))
for i in range(1, min(n, n // 2 + 5)):
if i == 0:
continue
# print("i", i)
temp1 = primeFactor(i)
temp2 = primeFactor(n - i)
temp = Counter()
temp.update(temp1)
temp.update(temp2)
for key, val in temp.items():
memo[jisho[key]] = max(memo[jisho[key]], val)
ans = 1
for i in range(len(primes)):
ans *= pow(primes[i], memo[i], mod)
ans %= mod
# print("i", i, ans)
print(ans)
nephrologist