結果

問題 No.1533 Don't be Negative!
ユーザー NyaanNyaanNyaanNyaan
提出日時 2021-06-07 16:49:26
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 331 ms / 8,000 ms
コード長 59,947 bytes
コンパイル時間 4,629 ms
コンパイル使用メモリ 306,868 KB
実行使用メモリ 6,400 KB
最終ジャッジ日時 2024-05-03 18:33:54
合計ジャッジ時間 13,497 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
5,248 KB
testcase_01 AC 16 ms
5,376 KB
testcase_02 AC 26 ms
5,376 KB
testcase_03 AC 152 ms
5,376 KB
testcase_04 AC 9 ms
5,376 KB
testcase_05 AC 16 ms
5,376 KB
testcase_06 AC 19 ms
5,376 KB
testcase_07 AC 11 ms
5,376 KB
testcase_08 AC 9 ms
5,376 KB
testcase_09 AC 26 ms
5,376 KB
testcase_10 AC 16 ms
5,376 KB
testcase_11 AC 229 ms
5,376 KB
testcase_12 AC 89 ms
5,376 KB
testcase_13 AC 45 ms
5,376 KB
testcase_14 AC 49 ms
5,376 KB
testcase_15 AC 89 ms
5,376 KB
testcase_16 AC 163 ms
5,376 KB
testcase_17 AC 45 ms
5,376 KB
testcase_18 AC 100 ms
5,376 KB
testcase_19 AC 137 ms
5,376 KB
testcase_20 AC 55 ms
5,376 KB
testcase_21 AC 138 ms
5,376 KB
testcase_22 AC 52 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 89 ms
5,376 KB
testcase_25 AC 187 ms
5,376 KB
testcase_26 AC 145 ms
5,376 KB
testcase_27 AC 53 ms
5,376 KB
testcase_28 AC 100 ms
5,376 KB
testcase_29 AC 193 ms
5,376 KB
testcase_30 AC 331 ms
6,272 KB
testcase_31 AC 109 ms
5,376 KB
testcase_32 AC 127 ms
5,376 KB
testcase_33 AC 243 ms
5,376 KB
testcase_34 AC 46 ms
5,376 KB
testcase_35 AC 2 ms
5,376 KB
testcase_36 AC 228 ms
5,376 KB
testcase_37 AC 177 ms
5,376 KB
testcase_38 AC 188 ms
5,376 KB
testcase_39 AC 121 ms
5,376 KB
testcase_40 AC 198 ms
5,376 KB
testcase_41 AC 122 ms
5,376 KB
testcase_42 AC 188 ms
5,376 KB
testcase_43 AC 122 ms
5,376 KB
testcase_44 AC 99 ms
5,376 KB
testcase_45 AC 162 ms
5,376 KB
testcase_46 AC 163 ms
5,376 KB
testcase_47 AC 242 ms
5,376 KB
testcase_48 AC 194 ms
5,376 KB
testcase_49 AC 121 ms
5,376 KB
testcase_50 AC 330 ms
6,400 KB
testcase_51 AC 330 ms
6,400 KB
testcase_52 AC 242 ms
5,376 KB
testcase_53 AC 240 ms
5,376 KB
testcase_54 AC 330 ms
6,272 KB
testcase_55 AC 329 ms
6,400 KB
testcase_56 AC 187 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2021-06-07 16:49:12
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  T &x() { return first; }
  const T &x() const { return first; }
  U &y() { return second; }
  const U &y() const { return second; }

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

}  // namespace Nyaan

// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

void outr() {}
template <typename T, class... U, char sep = ' '>
void outr(const T &t, const U &... u) {
  cout << t;
  outr(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

void dump(const bool& t) { cerr << (t ? "true" : "false"); }

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if constexpr (is_signed<T>::value) {
    if (t == -Nyaan::inf) res = "-inf";
  }
  if constexpr (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if constexpr (is_signed<T>::value) {
      if (t == -Nyaan::infLL) res = "-inf";
    }
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//





template <class T>
struct Matrix {
  vector<vector<T> > A;

  Matrix() = default;
  Matrix(int n, int m) : A(n, vector<T>(m, T())) {}
  Matrix(int n) : A(n, vector<T>(n, T())){};

  int H() const { return A.size(); }

  int W() const { return A[0].size(); }

  int size() const { return A.size(); }

  inline const vector<T> &operator[](int k) const { return A[k]; }

  inline vector<T> &operator[](int k) { return A[k]; }

  static Matrix I(int n) {
    Matrix mat(n);
    for (int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    int n = H(), m = W();
    assert(n == B.H() && m == B.W());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    int n = H(), m = W();
    assert(n == B.H() && m == B.W());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    int n = H(), m = B.W(), p = W();
    assert(p == B.H());
    vector<vector<T> > C(n, vector<T>(m, T{}));
    for (int i = 0; i < n; i++)
      for (int k = 0; k < p; k++)
        for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(H());
    while (k > 0) {
      if (k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

  Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

  Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

  Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

  bool operator==(const Matrix &B) const {
    assert(H() == B.H() && W() == B.W());
    for (int i = 0; i < H(); i++)
      for (int j = 0; j < W(); j++)
        if (A[i][j] != B[i][j]) return false;
    return true;
  }

  bool operator!=(const Matrix &B) const {
    assert(H() == B.H() && W() == B.W());
    for (int i = 0; i < H(); i++)
      for (int j = 0; j < W(); j++)
        if (A[i][j] != B[i][j]) return true;
    return false;
  }

  friend ostream &operator<<(ostream &os, const Matrix &p) {
    int n = p.H(), m = p.W();
    for (int i = 0; i < n; i++) {
      os << (i ? "   " : "") << "[";
      for (int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }

  T determinant() const {
    Matrix B(*this);
    assert(H() == W());
    T ret = 1;
    for (int i = 0; i < H(); i++) {
      int idx = -1;
      for (int j = i; j < W(); j++) {
        if (B[j][i] != 0) {
          idx = j;
          break;
        }
      }
      if (idx == -1) return 0;
      if (i != idx) {
        ret *= T(-1);
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T inv = T(1) / B[i][i];
      for (int j = 0; j < W(); j++) {
        B[i][j] *= inv;
      }
      for (int j = i + 1; j < H(); j++) {
        T a = B[j][i];
        if (a == 0) continue;
        for (int k = i; k < W(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return ret;
  }
};

/**
 * @brief 行列ライブラリ
 */

template <typename mint>
std::pair<int, mint> GaussElimination(vector<vector<mint>> &a,
                                      bool LE = false) {
  int H = a.size(), W = a[0].size();
  int rank = 0, je = LE ? W - 1 : W;
  mint det = 1;
  for (int j = 0; j < je; j++) {
    int idx = -1;
    for (int i = rank; i < H; i++) {
      if (a[i][j] != mint(0)) {
        idx = i;
        break;
      }
    }
    if (idx == -1) {
      det = 0;
      continue;
    }
    if (rank != idx) {
      det = -det;
      swap(a[rank], a[idx]);
    }
    det *= a[rank][j];
    if (LE && a[rank][j] != mint(1)) {
      mint coeff = a[rank][j].inverse();
      for (int k = j; k < W; k++) a[rank][k] *= coeff;
    }
    int is = LE ? 0 : rank + 1;
    for (int i = is; i < H; i++) {
      if (i == rank) continue;
      if (a[i][j] != mint(0)) {
        mint coeff = a[i][j] / a[rank][j];
        for (int k = j; k < W; k++) a[i][k] -= a[rank][k] * coeff;
      }
    }
    rank++;
  }
  return make_pair(rank, det);
}


template <typename mint>
vector<vector<mint>> LinearEquation(vector<vector<mint>> a, vector<mint> b) {
  int H = a.size(), W = a[0].size();
  for (int i = 0; i < H; i++) a[i].push_back(b[i]);
  auto p = GaussElimination(a, true);
  int rank = p.first;

  for (int i = rank; i < H; ++i) {
    if (a[i][W] != 0) return vector<vector<mint>>{};
  }

  vector<vector<mint>> res(1, vector<mint>(W));
  vector<int> pivot(W, -1);
  for (int i = 0, j = 0; i < rank; ++i) {
    while (a[i][j] == 0) ++j;
    res[0][j] = a[i][W], pivot[j] = i;
  }
  for (int j = 0; j < W; ++j) {
    if (pivot[j] == -1) {
      vector<mint> x(W);
      x[j] = 1;
      for (int k = 0; k < j; ++k) {
        if (pivot[k] != -1) x[k] = -a[pivot[k]][j];
      }
      res.push_back(x);
    }
  }
  return res;
}


template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  FPS pre(int sz) const {
    return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert((*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        if (i * k > deg) return FPS(deg, mint(0));
        mint rev = mint(1) / (*this)[i];
        FPS ret =
            (((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k));
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */


template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) : f(1, T(1)), g(1, T(1)), h(1, T(1)) {
    while (MAX >= (int)f.size()) extend();
  }

  void extend() {
    int n = f.size();
    int m = n * 2;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

// input  : h(0), h(1), ..., h(d - 1)
// output : h(m), h(m + 1), ..., h(m + d - 1)
template <typename mint>
FormalPowerSeries<mint> SamplePointShift(FormalPowerSeries<mint>& ys, mint m) {
  static Binomial<mint> C;
  int d = ys.size() - 1;
  FormalPowerSeries<mint> f(d + 1), g(d * 2 + 1);
  for (int i = 0; i <= d; i++) {
    f[i] = ys[i] * C.finv(i) * C.finv(d - i);
    if ((d - i) & 1) f[i] = -f[i];
  }
  for (int i = 0; i <= 2 * d; i++) {
    assert(m - d + i != mint(0));
    g[i] = (m - d + i).inverse();
  }
  auto h = f * g;
  mint coeff = 1;
  for (int i = 0; i <= d; i++) coeff *= (m - d + i);
  for (int i = 0; i <= d; i++) {
    h[i + d] *= coeff;
    coeff *= (m + i + 1) * g[i];
  }
  return FormalPowerSeries<mint>{begin(h) + d, begin(h) + 2 * d + 1};
}

// return m(k-1) * m(k-2) * ... * m(1) * m(0)
template <typename mint>
Matrix<mint> polynomial_matrix_prod(Matrix<FormalPowerSeries<mint>> &m,
                                    long long k) {
  using Mat = Matrix<mint>;
  using fps = FormalPowerSeries<mint>;

  auto shift = [](vector<Mat> &G, mint x) -> vector<Mat> {
    int d = G.size(), n = G[0].size();
    vector<Mat> H(d, Mat(n));
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        fps g(d);
        for (int l = 0; l < d; l++) g[l] = G[l][i][j];
        fps h = SamplePointShift(g, x);
        for (int l = 0; l < d; l++) H[l][i][j] = h[l];
      }
    }
    return H;
  };

  int n = m.size();
  int deg = 1;
  for (auto &_ : m.A) {
    for (auto &x : _) deg = max<int>(deg, (int)x.size() - 1);
  }
  while (deg & (deg - 1)) deg++;

  vector<Mat> G(deg + 1);
  long long v = 1;
  while (deg * v * v < k) v *= 2;
  mint iv = mint(v).inverse();

  for (int i = 0; i < (int)G.size(); i++) {
    mint x = mint(v) * i;
    Mat mt(n);
    for (int j = 0; j < n; j++)
      for (int l = 0; l < n; l++) mt[j][l] = m[j][l].eval(x);
    G[i] = mt;
  }

  for (long long w = 1; w != v; w <<= 1) {
    mint W = w;
    auto G1 = shift(G, W * iv);
    auto G2 = shift(G, (W * deg * v + v) * iv);
    auto G3 = shift(G, (W * deg * v + v + W) * iv);
    for (int i = 0; i <= w * deg; i++)
      G[i] = G1[i] * G[i], G2[i] = G3[i] * G2[i];
    copy(begin(G2), end(G2) - 1, back_inserter(G));
  }

  Mat res = Mat::I(n);
  long long i = 0;
  while (i + v <= k) res = G[i / v] * res, i += v;
  while (i < k) {
    Mat mt(n);
    for (int j = 0; j < n; j++)
      for (int l = 0; l < n; l++) mt[j][l] = m[j][l].eval(i);
    res = mt * res;
    i++;
  }
  return res;
}

/**
 * @brief 多項式行列のprefix product
 */

// return polynomial coefficient s.t. sum_{j=k...0} f_j(i) a_{i+j} = 0
// (In more details, read verification code.)
template <typename mint>
vector<FormalPowerSeries<mint>> find_p_recursive(vector<mint>& a, int d) {
  using fps = FormalPowerSeries<mint>;
  int n = a.size();
  int k = (n + 2) / (d + 2) - 1;
  if (k <= 0) return {};
  int m = (k + 1) * (d + 1);
  vector<vector<mint>> M(m - 1, vector<mint>(m));
  for (int i = 0; i < m - 1; i++) {
    for (int j = 0; j <= k; j++) {
      mint base = 1;
      for (int l = 0; l <= d; l++) {
        M[i][(d + 1) * j + l] = base * a[i + j];
        base *= i + j;
      }
    }
  }
  auto gauss = LinearEquation<mint>(M, vector<mint>(m - 1, 0));
  if (gauss.size() <= 1) return {};
  auto c = gauss[1];
  while (all_of(end(c) - d - 1, end(c), [](mint x) { return x == mint(0); })) {
    c.erase(end(c) - d - 1, end(c));
  }
  k = c.size() / (d + 1) - 1;
  vector<fps> res;
  for (int i = 0, j = 0; i < (int)c.size(); i += d + 1, j++) {
    fps f{1}, base{j, 1};
    fps sm;
    for (int l = 0; l <= d; l++) sm += f * c[i + l], f *= base;
    res.push_back(sm);
  }
  reverse(begin(res), end(res));
  return res;
}

template <typename mint>
mint kth_term_of_p_recursive(vector<mint>& a, long long k, int d) {
  if (k < (int)a.size()) return a[k];
  auto fs = find_p_recursive(a, d);
  assert(fs.empty() == false);
  int deg = fs.size() - 1;
  assert(deg >= 1);
  Matrix<FormalPowerSeries<mint>> m(deg), denom(1);
  for (int i = 0; i < deg; i++) m[0][i] = -fs[i + 1];
  for (int i = 1; i < deg; i++) m[i][i - 1] = fs[0];
  denom[0][0] = fs[0];
  Matrix<mint> a0(deg);
  for (int i = 0; i < deg; i++) a0[i][0] = a[deg - 1 - i];
  mint res = (polynomial_matrix_prod(m, k - deg + 1) * a0)[0][0];
  res /= polynomial_matrix_prod(denom, k - deg + 1)[0][0];
  return res;
}

template <typename mint>
mint kth_term_of_p_recursive(vector<mint>& a, long long k) {
  if (k < (int)a.size()) return a[k];

  int i = a.size() - 1;
  vector<mint> b{begin(a), end(a) - 1};

  for (int d = 0; d < 10; d++) {
    if (kth_term_of_p_recursive(b, i, d) == a.back()) {
      return kth_term_of_p_recursive(a, k, d);
    }
  }

  exit(1);
}

/**
 * @brief P-recursiveの高速計算
 * @docs docs/fps/find-p-recursive.md
 */




#include <immintrin.h>

__attribute__((target("sse4.2"))) inline __m128i my128_mullo_epu32(
    const __m128i &a, const __m128i &b) {
  return _mm_mullo_epi32(a, b);
}

__attribute__((target("sse4.2"))) inline __m128i my128_mulhi_epu32(
    const __m128i &a, const __m128i &b) {
  __m128i a13 = _mm_shuffle_epi32(a, 0xF5);
  __m128i b13 = _mm_shuffle_epi32(b, 0xF5);
  __m128i prod02 = _mm_mul_epu32(a, b);
  __m128i prod13 = _mm_mul_epu32(a13, b13);
  __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13),
                                    _mm_unpackhi_epi32(prod02, prod13));
  return prod;
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_mul_128(
    const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) {
  return _mm_sub_epi32(
      _mm_add_epi32(my128_mulhi_epu32(a, b), m1),
      my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1));
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_add_128(
    const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_sub_128(
    const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(a, b);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("avx2"))) inline __m256i my256_mullo_epu32(
    const __m256i &a, const __m256i &b) {
  return _mm256_mullo_epi32(a, b);
}

__attribute__((target("avx2"))) inline __m256i my256_mulhi_epu32(
    const __m256i &a, const __m256i &b) {
  __m256i a13 = _mm256_shuffle_epi32(a, 0xF5);
  __m256i b13 = _mm256_shuffle_epi32(b, 0xF5);
  __m256i prod02 = _mm256_mul_epu32(a, b);
  __m256i prod13 = _mm256_mul_epu32(a13, b13);
  __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13),
                                       _mm256_unpackhi_epi32(prod02, prod13));
  return prod;
}

__attribute__((target("avx2"))) inline __m256i montgomery_mul_256(
    const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) {
  return _mm256_sub_epi32(
      _mm256_add_epi32(my256_mulhi_epu32(a, b), m1),
      my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1));
}

__attribute__((target("avx2"))) inline __m256i montgomery_add_256(
    const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}

__attribute__((target("avx2"))) inline __m256i montgomery_sub_256(
    const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(a, b);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}
namespace ntt_inner {
using u64 = uint64_t;
constexpr uint32_t get_pr(uint32_t mod) {
  if (mod == 2) return 1;
  u64 ds[32] = {};
  int idx = 0;
  u64 m = mod - 1;
  for (u64 i = 2; i * i <= m; ++i) {
    if (m % i == 0) {
      ds[idx++] = i;
      while (m % i == 0) m /= i;
    }
  }
  if (m != 1) ds[idx++] = m;

  uint32_t pr = 2;
  while (1) {
    int flg = 1;
    for (int i = 0; i < idx; ++i) {
      u64 a = pr, b = (mod - 1) / ds[i], r = 1;
      while (b) {
        if (b & 1) r = r * a % mod;
        a = a * a % mod;
        b >>= 1;
      }
      if (r == 1) {
        flg = 0;
        break;
      }
    }
    if (flg == 1) break;
    ++pr;
  }
  return pr;
}

constexpr int SZ_FFT_BUF = 1 << 23;
uint32_t _buf1[SZ_FFT_BUF] __attribute__((aligned(64)));
uint32_t _buf2[SZ_FFT_BUF] __attribute__((aligned(64)));
}  // namespace ntt_inner

template <typename mint>
struct NTT {
  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = ntt_inner::get_pr(mint::get_mod());
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];
  mint *buf1, *buf2;

  constexpr NTT() {
    setwy(level);
    union raw_cast {
      mint dat;
      uint32_t _;
    };
    buf1 = &(((raw_cast *)(ntt_inner::_buf1))->dat);
    buf2 = &(((raw_cast *)(ntt_inner::_buf2))->dat);
  }

  constexpr void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[0] = dy[0] = w[1] * w[1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  __attribute__((target("avx2"))) void ntt(mint *a, int n) {
    int k = n ? __builtin_ctz(n) : 0;
    if (k == 0) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      if (v < 8) {
        for (int j = 0; j < v; ++j) {
          mint ajv = a[j + v];
          a[j + v] = a[j] - ajv;
          a[j] += ajv;
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        int j0 = 0;
        int j1 = v;
        for (; j0 < v; j0 += 8, j1 += 8) {
          __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
          __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
          __m256i naj = montgomery_add_256(T0, T1, m2, m0);
          __m256i najv = montgomery_sub_256(T0, T1, m2, m0);
          _mm256_storeu_si256((__m256i *)(a + j0), naj);
          _mm256_storeu_si256((__m256i *)(a + j1), najv);
        }
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      if (v == 1) {
        mint ww = one, xx = one, wx = one;
        for (int jh = 0; jh < u;) {
          ww = xx * xx, wx = ww * xx;
          mint t0 = a[jh + 0], t1 = a[jh + 1] * xx;
          mint t2 = a[jh + 2] * ww, t3 = a[jh + 3] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[jh + 0] = t0p2 + t1p3, a[jh + 1] = t0p2 - t1p3;
          a[jh + 2] = t0m2 + t1m3, a[jh + 3] = t0m2 - t1m3;
          xx *= dw[__builtin_ctz((jh += 4))];
        }
      } else if (v == 4) {
        const __m128i m0 = _mm_set1_epi32(0);
        const __m128i m1 = _mm_set1_epi32(mod);
        const __m128i m2 = _mm_set1_epi32(mod + mod);
        const __m128i r = _mm_set1_epi32(mint::r);
        const __m128i Imag = _mm_set1_epi32(imag.a);
        mint ww = one, xx = one, wx = one;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = v;
            for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i T0P2 = montgomery_add_128(T0, T2, m2, m0);
              const __m128i T1P3 = montgomery_add_128(T1, T3, m2, m0);
              const __m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0);
              const __m128i T1M3 = montgomery_mul_128(
                  montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_sub_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j2),
                               montgomery_add_128(T0M2, T1M3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j3),
                               montgomery_sub_128(T0M2, T1M3, m2, m0));
            }
          } else {
            ww = xx * xx, wx = ww * xx;
            const __m128i WW = _mm_set1_epi32(ww.a);
            const __m128i WX = _mm_set1_epi32(wx.a);
            const __m128i XX = _mm_set1_epi32(xx.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i MT1 = montgomery_mul_128(T1, XX, r, m1);
              const __m128i MT2 = montgomery_mul_128(T2, WW, r, m1);
              const __m128i MT3 = montgomery_mul_128(T3, WX, r, m1);
              const __m128i T0P2 = montgomery_add_128(T0, MT2, m2, m0);
              const __m128i T1P3 = montgomery_add_128(MT1, MT3, m2, m0);
              const __m128i T0M2 = montgomery_sub_128(T0, MT2, m2, m0);
              const __m128i T1M3 = montgomery_mul_128(
                  montgomery_sub_128(MT1, MT3, m2, m0), Imag, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_sub_128(T0P2, T1P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j2),
                               montgomery_add_128(T0M2, T1M3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j3),
                               montgomery_sub_128(T0M2, T1M3, m2, m0));
            }
          }
          xx *= dw[__builtin_ctz((jh += 4))];
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m1 = _mm256_set1_epi32(mod);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        const __m256i r = _mm256_set1_epi32(mint::r);
        const __m256i Imag = _mm256_set1_epi32(imag.a);
        mint ww = one, xx = one, wx = one;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = v;
            for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i T0P2 = montgomery_add_256(T0, T2, m2, m0);
              const __m256i T1P3 = montgomery_add_256(T1, T3, m2, m0);
              const __m256i T0M2 = montgomery_sub_256(T0, T2, m2, m0);
              const __m256i T1M3 = montgomery_mul_256(
                  montgomery_sub_256(T1, T3, m2, m0), Imag, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_sub_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j2),
                                  montgomery_add_256(T0M2, T1M3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j3),
                                  montgomery_sub_256(T0M2, T1M3, m2, m0));
            }
          } else {
            ww = xx * xx, wx = ww * xx;
            const __m256i WW = _mm256_set1_epi32(ww.a);
            const __m256i WX = _mm256_set1_epi32(wx.a);
            const __m256i XX = _mm256_set1_epi32(xx.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i MT1 = montgomery_mul_256(T1, XX, r, m1);
              const __m256i MT2 = montgomery_mul_256(T2, WW, r, m1);
              const __m256i MT3 = montgomery_mul_256(T3, WX, r, m1);
              const __m256i T0P2 = montgomery_add_256(T0, MT2, m2, m0);
              const __m256i T1P3 = montgomery_add_256(MT1, MT3, m2, m0);
              const __m256i T0M2 = montgomery_sub_256(T0, MT2, m2, m0);
              const __m256i T1M3 = montgomery_mul_256(
                  montgomery_sub_256(MT1, MT3, m2, m0), Imag, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_sub_256(T0P2, T1P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j2),
                                  montgomery_add_256(T0M2, T1M3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j3),
                                  montgomery_sub_256(T0M2, T1M3, m2, m0));
            }
          }
          xx *= dw[__builtin_ctz((jh += 4))];
        }
      }
      u <<= 2;
      v >>= 2;
    }
  }

  __attribute__((target("avx2"))) void intt(mint *a, int n,
                                            int normalize = true) {
    int k = n ? __builtin_ctz(n) : 0;
    if (k == 0) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      if (normalize) {
        a[0] *= mint(2).inverse();
        a[1] *= mint(2).inverse();
      }
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      if (v == 1) {
        mint ww = one, xx = one, yy = one;
        u <<= 2;
        for (int jh = 0; jh < u;) {
          ww = xx * xx, yy = xx * imag;
          mint t0 = a[jh + 0], t1 = a[jh + 1];
          mint t2 = a[jh + 2], t3 = a[jh + 3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[jh + 0] = t0p1 + t2p3, a[jh + 2] = (t0p1 - t2p3) * ww;
          a[jh + 1] = t0m1 + t2m3, a[jh + 3] = (t0m1 - t2m3) * ww;
          xx *= dy[__builtin_ctz(jh += 4)];
        }
      } else if (v == 4) {
        const __m128i m0 = _mm_set1_epi32(0);
        const __m128i m1 = _mm_set1_epi32(mod);
        const __m128i m2 = _mm_set1_epi32(mod + mod);
        const __m128i r = _mm_set1_epi32(mint::r);
        const __m128i Imag = _mm_set1_epi32(imag.a);
        mint ww = one, xx = one, yy = one;
        u <<= 2;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = v + v;
            int j3 = j2 + v;
            for (; j0 < v; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
              const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
              const __m128i T0M1 = montgomery_sub_128(T0, T1, m2, m0);
              const __m128i T2M3 = montgomery_mul_128(
                  montgomery_sub_128(T2, T3, m2, m0), Imag, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P1, T2P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j2),
                               montgomery_sub_128(T0P1, T2P3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_add_128(T0M1, T2M3, m2, m0));
              _mm_storeu_si128((__m128i *)(a + j3),
                               montgomery_sub_128(T0M1, T2M3, m2, m0));
            }
          } else {
            ww = xx * xx, yy = xx * imag;
            const __m128i WW = _mm_set1_epi32(ww.a);
            const __m128i XX = _mm_set1_epi32(xx.a);
            const __m128i YY = _mm_set1_epi32(yy.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
              const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
              const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
              const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
              const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
              const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
              const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
              const __m128i T0M1 = montgomery_mul_128(
                  montgomery_sub_128(T0, T1, m2, m0), XX, r, m1);
              __m128i T2M3 = montgomery_mul_128(
                  montgomery_sub_128(T2, T3, m2, m0), YY, r, m1);
              _mm_storeu_si128((__m128i *)(a + j0),
                               montgomery_add_128(T0P1, T2P3, m2, m0));
              _mm_storeu_si128(
                  (__m128i *)(a + j2),
                  montgomery_mul_128(montgomery_sub_128(T0P1, T2P3, m2, m0), WW,
                                     r, m1));
              _mm_storeu_si128((__m128i *)(a + j1),
                               montgomery_add_128(T0M1, T2M3, m2, m0));
              _mm_storeu_si128(
                  (__m128i *)(a + j3),
                  montgomery_mul_128(montgomery_sub_128(T0M1, T2M3, m2, m0), WW,
                                     r, m1));
            }
          }
          xx *= dy[__builtin_ctz(jh += 4)];
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m1 = _mm256_set1_epi32(mod);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        const __m256i r = _mm256_set1_epi32(mint::r);
        const __m256i Imag = _mm256_set1_epi32(imag.a);
        mint ww = one, xx = one, yy = one;
        u <<= 2;
        for (int jh = 0; jh < u;) {
          if (jh == 0) {
            int j0 = 0;
            int j1 = v;
            int j2 = v + v;
            int j3 = j2 + v;
            for (; j0 < v; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0);
              const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0);
              const __m256i T0M1 = montgomery_sub_256(T0, T1, m2, m0);
              const __m256i T2M3 = montgomery_mul_256(
                  montgomery_sub_256(T2, T3, m2, m0), Imag, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P1, T2P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j2),
                                  montgomery_sub_256(T0P1, T2P3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_add_256(T0M1, T2M3, m2, m0));
              _mm256_storeu_si256((__m256i *)(a + j3),
                                  montgomery_sub_256(T0M1, T2M3, m2, m0));
            }
          } else {
            ww = xx * xx, yy = xx * imag;
            const __m256i WW = _mm256_set1_epi32(ww.a);
            const __m256i XX = _mm256_set1_epi32(xx.a);
            const __m256i YY = _mm256_set1_epi32(yy.a);
            int j0 = jh * v;
            int j1 = j0 + v;
            int j2 = j1 + v;
            int j3 = j2 + v;
            int je = j1;
            for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) {
              const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
              const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
              const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2));
              const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3));
              const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0);
              const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0);
              const __m256i T0M1 = montgomery_mul_256(
                  montgomery_sub_256(T0, T1, m2, m0), XX, r, m1);
              const __m256i T2M3 = montgomery_mul_256(
                  montgomery_sub_256(T2, T3, m2, m0), YY, r, m1);
              _mm256_storeu_si256((__m256i *)(a + j0),
                                  montgomery_add_256(T0P1, T2P3, m2, m0));
              _mm256_storeu_si256(
                  (__m256i *)(a + j2),
                  montgomery_mul_256(montgomery_sub_256(T0P1, T2P3, m2, m0), WW,
                                     r, m1));
              _mm256_storeu_si256((__m256i *)(a + j1),
                                  montgomery_add_256(T0M1, T2M3, m2, m0));
              _mm256_storeu_si256(
                  (__m256i *)(a + j3),
                  montgomery_mul_256(montgomery_sub_256(T0M1, T2M3, m2, m0), WW,
                                     r, m1));
            }
          }
          xx *= dy[__builtin_ctz(jh += 4)];
        }
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      v = 1 << (k - 1);
      if (v < 8) {
        for (int j = 0; j < v; ++j) {
          mint ajv = a[j] - a[j + v];
          a[j] += a[j + v];
          a[j + v] = ajv;
        }
      } else {
        const __m256i m0 = _mm256_set1_epi32(0);
        const __m256i m2 = _mm256_set1_epi32(mod + mod);
        int j0 = 0;
        int j1 = v;
        for (; j0 < v; j0 += 8, j1 += 8) {
          const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0));
          const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1));
          __m256i naj = montgomery_add_256(T0, T1, m2, m0);
          __m256i najv = montgomery_sub_256(T0, T1, m2, m0);
          _mm256_storeu_si256((__m256i *)(a + j0), naj);
          _mm256_storeu_si256((__m256i *)(a + j1), najv);
        }
      }
    }
    if (normalize) {
      mint invn = mint(n).inverse();
      for (int i = 0; i < n; i++) a[i] *= invn;
    }
  }

  __attribute__((target("avx2"))) void inplace_multiply(
      int l1, int l2, int zero_padding = true) {
    int l = l1 + l2 - 1;
    int M = 4;
    while (M < l) M <<= 1;
    if (zero_padding) {
      for (int i = l1; i < M; i++) ntt_inner::_buf1[i] = 0;
      for (int i = l2; i < M; i++) ntt_inner::_buf2[i] = 0;
    }
    const __m256i m0 = _mm256_set1_epi32(0);
    const __m256i m1 = _mm256_set1_epi32(mod);
    const __m256i r = _mm256_set1_epi32(mint::r);
    const __m256i N2 = _mm256_set1_epi32(mint::n2);
    for (int i = 0; i < l1; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
      __m256i b = montgomery_mul_256(a, N2, r, m1);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), b);
    }
    for (int i = 0; i < l2; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i));
      __m256i b = montgomery_mul_256(a, N2, r, m1);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf2 + i), b);
    }
    ntt(buf1, M);
    ntt(buf2, M);
    for (int i = 0; i < M; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
      __m256i b = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i));
      __m256i c = montgomery_mul_256(a, b, r, m1);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), c);
    }
    intt(buf1, M, false);
    const __m256i INVM = _mm256_set1_epi32((mint(M).inverse()).a);
    for (int i = 0; i < l; i += 8) {
      __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i));
      __m256i b = montgomery_mul_256(a, INVM, r, m1);
      __m256i c = my256_mulhi_epu32(my256_mullo_epu32(b, r), m1);
      __m256i d = _mm256_and_si256(_mm256_cmpgt_epi32(c, m0), m1);
      __m256i e = _mm256_sub_epi32(d, c);
      _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), e);
    }
  }

  void ntt(vector<mint> &a) {
    int M = (int)a.size();
    for (int i = 0; i < M; i++) buf1[i].a = a[i].a;
    ntt(buf1, M);
    for (int i = 0; i < M; i++) a[i].a = buf1[i].a;
  }

  void intt(vector<mint> &a) {
    int M = (int)a.size();
    for (int i = 0; i < M; i++) buf1[i].a = a[i].a;
    intt(buf1, M, true);
    for (int i = 0; i < M; i++) a[i].a = buf1[i].a;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    if (a.size() == 0 && b.size() == 0) return vector<mint>{};
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    assert(l <= ntt_inner::SZ_FFT_BUF);
    int M = 4;
    while (M < l) M <<= 1;
    for (int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a;
    for (int i = (int)a.size(); i < M; ++i) buf1[i].a = 0;
    for (int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a;
    for (int i = (int)b.size(); i < M; ++i) buf2[i].a = 0;
    ntt(buf1, M);
    ntt(buf2, M);
    for (int i = 0; i < M; ++i)
      buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a);
    intt(buf1, M, false);
    vector<mint> s(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] = buf1[i] * invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    for (int i = 0; i < M; i++) buf1[i].a = a[i].a;
    intt(buf1, M);
    mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) buf1[i] *= r, r *= zeta;
    ntt(buf1, M);
    a.resize(2 * M);
    for (int i = 0; i < M; i++) a[M + i].a = buf1[i].a;
  }
};

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
  if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint>& r) {
  if (this->empty() || r.empty()) {
    this->clear();
    return *this;
  }
  set_fft();
  auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
  return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
  set_fft();
  return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
  assert((*this)[0] != mint(0));
  if (deg == -1) deg = (int)this->size();
  FormalPowerSeries<mint> res(deg);
  res[0] = {mint(1) / (*this)[0]};
  for (int d = 1; d < deg; d <<= 1) {
    FormalPowerSeries<mint> f(2 * d), g(2 * d);
    for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
    for (int j = 0; j < d; j++) g[j] = res[j];
    f.ntt();
    g.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = 0; j < d; j++) f[j] = 0;
    f.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
  }
  return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
  using fps = FormalPowerSeries<mint>;
  assert((*this).size() == 0 || (*this)[0] == mint(0));
  if (deg == -1) deg = this->size();

  fps inv;
  inv.reserve(deg + 1);
  inv.push_back(mint(0));
  inv.push_back(mint(1));

  auto inplace_integral = [&](fps& F) -> void {
    const int n = (int)F.size();
    auto mod = mint::get_mod();
    while ((int)inv.size() <= n) {
      int i = inv.size();
      inv.push_back((-inv[mod % i]) * (mod / i));
    }
    F.insert(begin(F), mint(0));
    for (int i = 1; i <= n; i++) F[i] *= inv[i];
  };

  auto inplace_diff = [](fps& F) -> void {
    if (F.empty()) return;
    F.erase(begin(F));
    mint coeff = 1, one = 1;
    for (int i = 0; i < (int)F.size(); i++) {
      F[i] *= coeff;
      coeff += one;
    }
  };

  fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
  for (int m = 2; m < deg; m *= 2) {
    auto y = b;
    y.resize(2 * m);
    y.ntt();
    z1 = z2;
    fps z(m);
    for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
    z.intt();
    fill(begin(z), begin(z) + m / 2, mint(0));
    z.ntt();
    for (int i = 0; i < m; ++i) z[i] *= -z1[i];
    z.intt();
    c.insert(end(c), begin(z) + m / 2, end(z));
    z2 = c;
    z2.resize(2 * m);
    z2.ntt();
    fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
    x.resize(m);
    inplace_diff(x);
    x.push_back(mint(0));
    x.ntt();
    for (int i = 0; i < m; ++i) x[i] *= y[i];
    x.intt();
    x -= b.diff();
    x.resize(2 * m);
    for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
    x.intt();
    x.pop_back();
    inplace_integral(x);
    for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
    fill(begin(x), begin(x) + m, mint(0));
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
    x.intt();
    b.insert(end(b), begin(x) + m, end(x));
  }
  return fps{begin(b), begin(b) + deg};
}

/**
 * @brief NTT mod用FPSライブラリ
 * @docs docs/fps/ntt-friendly-fps.md
 */




template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};


using namespace Nyaan;

using mint = LazyMontgomeryModInt<998244353>;
Binomial<mint> C;
using vm = vector<mint>;
using vvm = vector<vm>;
using fps = FormalPowerSeries<mint>;

mint naive(ll N, ll M, ll K) {
  vm ret(N + 1);
  vm dp(N * M * 2 + 100);
  int st = N * M + 10;
  dp[st] = 1;
  vi nxt;
  reg(i, -M, M + 1) if (abs(i) != K) nxt.push_back(i);
  vm nx(sz(dp));
  rep1(t, N) {
    fill(begin(nx) + st - N * M, begin(nx) + st + N * M + 1, mint(0));
    reg(i, st - N * M, st + N * M + 1) each(di, nxt) nx[i + di] += dp[i];
    swap(dp, nx);
    ret[t] = dp[st];
  }
  mint ans = 0;
  mint L = sz(nxt);
  rep1(t, N) {
    mint x = L.pow(t) - ret[t];
    x /= 2;
    ans += x * (L.pow(N - t)) * (N + 1 - t);
  }
  return ans;
}

void Nyaan::solve() {
  inl(N, M, K);
  if(M == 1 and K == 1) die(0);
  
  vm a(100);
  rep(i, 100) a[i] = naive(i + 1, M, K);

  out(kth_term_of_p_recursive(a, N - 1));
}
0