結果
問題 | No.325 マンハッタン距離2 |
ユーザー | pekempey |
提出日時 | 2015-12-18 01:01:52 |
言語 | C++11 (gcc 11.4.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 4,088 bytes |
コンパイル時間 | 1,997 ms |
コンパイル使用メモリ | 180,260 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-16 08:18:33 |
合計ジャッジ時間 | 2,799 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | RE | - |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> #define GET_MACRO(a, b, c, NAME, ...) NAME #define rep(...) GET_MACRO(__VA_ARGS__, rep3, rep2)(__VA_ARGS__) #define rep2(i, a) rep3 (i, 0, a) #define rep3(i, a, b) for (int i = (a); i < (b); i++) #define repr(...) GET_MACRO(__VA_ARGS__, repr3, repr2)(__VA_ARGS__) #define repr2(i, a) repr3 (i, 0, a) #define repr3(i, a, b) for (int i = (b) - 1; i >= (a); i--) template<class T1, class T2> inline bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } using namespace std; typedef long long ll; typedef __int128_t D; typedef complex<D> P; const D eps = 0; /*/ D abs(D a) { if (a < 0) return -a; return a; } /*/ D dot(P a, P b) { return real(conj(a) * b); } D cross(P a, P b) { return imag(conj(a) * b); } bool comp(P a, P b) { if (a.real() != b.real()) return a.real() < b.real(); return a.imag() < b.imag(); } vector<P> convexfull(vector<P> &ps) { int n = ps.size(); sort(ps.begin(), ps.end(), comp); int k = 0; vector<P> qs(n * 2); for (int i = 0; i < n; i++) { while (k > 1 && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) <= 0) k--; qs[k++] = ps[i]; } for (int i = n - 2, t = k; i >= 0; i--) { while (k > t && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) <= 0) k--; qs[k++] = ps[i]; } qs.resize(k - 1); return qs; } int ccw(P a, P b, P c) { b -= a; c -= a; if (cross(b, c) > eps) return 1; if (cross(b, c) < -eps) return -1; if (dot(b, c) < -eps) return 2; if (norm(b) < norm(c)) return -2; return 0; } bool intersectSS(P p1, P p2, P p3, P p4) { return ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0; } P intersection(P p1, P p2, P q1, P q2) { P base = q2 - q1; D d1 = abs(cross(base, p1 - q1)); D d2 = abs(cross(base, p2 - q1)); return p1 + (p2 - p1) * d1 / (d1 + d2); } bool contains(P p, vector<P> poly) { int n = poly.size(); int count = 0; rep (i, n) { P d = poly[(i + 1) % n] - poly[i]; P x = p - poly[i]; if (cross(d, x) >= 0) count++; } return count == n; } D area2(vector<P> ps) { if (ps.size() <= 2) return 0; int n = ps.size(); D res = 0; rep (i, n) { P p = ps[i]; P q = ps[(i + 1) % n]; res += cross(p, q); } return res; } D lattice(P p, P q) { D dx = abs(real(p) - real(q)); D dy = abs(imag(p) - imag(q)); return __gcd(dx, dy); } int main() { D x1, y1, x2, y2, d; ll x1_, y1_, x2_, y2_, d_; cin >> x1_ >> y1_ >> x2_ >> y2_ >> d_; x1 = x1_; y1 = y1_; x2 = x2_; y2 = y2_; d = d_; vector<P> ps; vector<P> rect; rect.push_back(P(x1, y1)); rect.push_back(P(x2, y1)); rect.push_back(P(x2, y2)); rect.push_back(P(x1, y2)); vector<pair<P, P>> segs; segs.emplace_back(P(x1, y1), P(x2, y1)); segs.emplace_back(P(x2, y1), P(x2, y2)); segs.emplace_back(P(x2, y2), P(x1, y2)); segs.emplace_back(P(x1, y2), P(x1, y1)); vector<pair<P, P>> lines; lines.emplace_back(P(d, 0), P(0, d)); lines.emplace_back(P(0, d), P(-d, 0)); lines.emplace_back(P(-d, 0), P(0, -d)); lines.emplace_back(P(0, -d), P(d, 0)); vector<P> poly; poly.push_back(P(d, 0)); poly.push_back(P(0, d)); poly.push_back(P(-d, 0)); poly.push_back(P(0, -d)); rep (i, rect.size()) { if (contains(rect[i], poly)) { ps.push_back(rect[i]); } } rep (i, poly.size()) { if (contains(poly[i], rect)) { ps.push_back(poly[i]); } } rep (i, segs.size()) { rep (j, lines.size()) { P p1 = segs[i].first; P p2 = segs[i].second; P q1 = lines[j].first; P q2 = lines[j].second; if (intersectSS(p1, p2, q1, q2)) { ps.emplace_back(intersection(p1, p2, q1, q2)); } } } if (ps.size() == 0) { cout << 0 << endl; return 0; } set<pair<D, D>> st; rep (i, ps.size()) { st.emplace(real(ps[i]), imag(ps[i])); } ps.clear(); for (auto p : st) { ps.push_back(P(p.first, p.second)); } ps = convexfull(ps); D S = area2(ps); D b = 0; rep (i, ps.size()) { P p = ps[i]; P q = ps[(i + 1) % ps.size()]; b += lattice(p, q); } D inner = (S - b + 2) / 2; D ans = inner + b; cout << (ll)ans << endl; return 0; }