結果

問題 No.325 マンハッタン距離2
ユーザー pekempey
提出日時 2015-12-18 01:09:56
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 2 ms / 1,000 ms
コード長 4,228 bytes
コンパイル時間 1,857 ms
コンパイル使用メモリ 182,552 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-16 08:19:45
合計ジャッジ時間 2,773 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define GET_MACRO(a, b, c, NAME, ...) NAME
#define rep(...) GET_MACRO(__VA_ARGS__, rep3, rep2)(__VA_ARGS__)
#define rep2(i, a) rep3 (i, 0, a)
#define rep3(i, a, b) for (int i = (a); i < (b); i++)
#define repr(...) GET_MACRO(__VA_ARGS__, repr3, repr2)(__VA_ARGS__)
#define repr2(i, a) repr3 (i, 0, a)
#define repr3(i, a, b) for (int i = (b) - 1; i >= (a); i--)
template<class T1, class T2> inline bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); }
template<class T1, class T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
using namespace std;
typedef long long ll;
typedef __int128_t D;
typedef complex<D> P;
const D eps = 0;
/*/
D abs(D a) {
if (a < 0) return -a;
return a;
}
/*/
D dot(P a, P b) {
return real(conj(a) * b);
}
D cross(P a, P b) {
return imag(conj(a) * b);
}
bool comp(P a, P b) {
if (a.real() != b.real()) return a.real() < b.real();
return a.imag() < b.imag();
}
vector<P> convexfull(vector<P> &ps) {
int n = ps.size();
sort(ps.begin(), ps.end(), comp);
int k = 0;
vector<P> qs(n * 2);
for (int i = 0; i < n; i++) {
while (k > 1 && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) <= 0) k--;
qs[k++] = ps[i];
}
for (int i = n - 2, t = k; i >= 0; i--) {
while (k > t && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) <= 0) k--;
qs[k++] = ps[i];
}
qs.resize(k - 1);
return qs;
}
int ccw(P a, P b, P c) {
b -= a; c -= a;
if (cross(b, c) > eps) return 1;
if (cross(b, c) < -eps) return -1;
if (dot(b, c) < -eps) return 2;
if (norm(b) < norm(c)) return -2;
return 0;
}
bool intersectSS(P p1, P p2, P p3, P p4) {
return ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&
ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0;
}
P intersection(P p1, P p2, P q1, P q2) {
P base = q2 - q1;
D d1 = abs(cross(base, p1 - q1));
D d2 = abs(cross(base, p2 - q1));
return p1 + (p2 - p1) * d1 / (d1 + d2);
}
bool contains(P p, vector<P> poly) {
int n = poly.size();
int count = 0;
rep (i, n) {
P d = poly[(i + 1) % n] - poly[i];
P x = p - poly[i];
if (cross(d, x) >= 0) count++;
}
return count == n;
}
D area2(vector<P> ps) {
if (ps.size() <= 2) return 0;
int n = ps.size();
D res = 0;
rep (i, n) {
P p = ps[i];
P q = ps[(i + 1) % n];
res += cross(p, q);
}
return res;
}
D lattice(P p, P q) {
D dx = abs(real(p) - real(q));
D dy = abs(imag(p) - imag(q));
return __gcd(dx, dy);
}
int main() {
D x1, y1, x2, y2, d;
ll x1_, y1_, x2_, y2_, d_;
cin >> x1_ >> y1_ >> x2_ >> y2_ >> d_;
x1 = x1_;
y1 = y1_;
x2 = x2_;
y2 = y2_;
d = d_;
if (d == 0) {
if (x1 <= 0 && 0 <= x2 && y1 <= 0 && 0 <= y2) {
cout << 1 << endl;
} else {
cout << 0 << endl;
}
return 0;
}
vector<P> ps;
vector<P> rect;
rect.push_back(P(x1, y1));
rect.push_back(P(x2, y1));
rect.push_back(P(x2, y2));
rect.push_back(P(x1, y2));
vector<pair<P, P>> segs;
segs.emplace_back(P(x1, y1), P(x2, y1));
segs.emplace_back(P(x2, y1), P(x2, y2));
segs.emplace_back(P(x2, y2), P(x1, y2));
segs.emplace_back(P(x1, y2), P(x1, y1));
vector<pair<P, P>> lines;
lines.emplace_back(P(d, 0), P(0, d));
lines.emplace_back(P(0, d), P(-d, 0));
lines.emplace_back(P(-d, 0), P(0, -d));
lines.emplace_back(P(0, -d), P(d, 0));
vector<P> poly;
poly.push_back(P(d, 0));
poly.push_back(P(0, d));
poly.push_back(P(-d, 0));
poly.push_back(P(0, -d));
rep (i, rect.size()) {
if (contains(rect[i], poly)) {
ps.push_back(rect[i]);
}
}
rep (i, poly.size()) {
if (contains(poly[i], rect)) {
ps.push_back(poly[i]);
}
}
rep (i, segs.size()) {
rep (j, lines.size()) {
P p1 = segs[i].first;
P p2 = segs[i].second;
P q1 = lines[j].first;
P q2 = lines[j].second;
if (intersectSS(p1, p2, q1, q2)) {
ps.emplace_back(intersection(p1, p2, q1, q2));
}
}
}
if (ps.size() == 0) {
cout << 0 << endl;
return 0;
}
set<pair<D, D>> st;
rep (i, ps.size()) {
st.emplace(real(ps[i]), imag(ps[i]));
}
ps.clear();
for (auto p : st) {
ps.push_back(P(p.first, p.second));
}
ps = convexfull(ps);
D S = area2(ps);
D b = 0;
rep (i, ps.size()) {
P p = ps[i];
P q = ps[(i + 1) % ps.size()];
b += lattice(p, q);
}
D inner = (S - b + 2) / 2;
D ans = inner + b;
cout << (ll)ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0