結果
問題 | No.325 マンハッタン距離2 |
ユーザー |
![]() |
提出日時 | 2015-12-19 00:22:07 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 2 ms / 1,000 ms |
コード長 | 5,574 bytes |
コンパイル時間 | 1,361 ms |
コンパイル使用メモリ | 117,696 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 08:46:55 |
合計ジャッジ時間 | 2,258 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 24 |
ソースコード
#include <iostream>#include <algorithm>#include <cmath>#include <vector>#include <complex>#include <queue>#include <deque>#include <set>#include <map>#include <unordered_set>#include <unordered_map>#include <iomanip>#include <assert.h>#include <array>#include <cstdio>#include <cstring>#include <random>#include <functional>#include <numeric>#include <bitset>using namespace std;#define REP(i,a,b) for(int i=a;i<(int)b;i++)#define rep(i,n) REP(i,0,n)#define all(c) (c).begin(), (c).end()#define zero(a) memset(a, 0, sizeof a)#define minus(a) memset(a, -1, sizeof a)#define minimize(a, x) a = std::min(a, x)#define maximize(a, x) a = std::max(a, x)typedef long long ll;int const inf = 1<<29;typedef long double ld;const ld EPS = std::numeric_limits<ld>::epsilon();const ld INF = 1e12;typedef complex<ld> P;namespace std {bool operator < (const P& a, const P& b) {return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);}}ld cross(const P& a, const P& b) {return imag(conj(a)*b);}ld dot(const P& a, const P& b) {return real(conj(a)*b);}struct L : public vector<P> {L(const P &a, const P &b) {push_back(a); push_back(b);}};typedef vector<P> G;struct C {P p; ld r;C(const P &p, ld r) : p(p), r(r) { }};typedef P point;int ccw(P a, P b, P c) {b -= a; c -= a;if (cross(b, c) > 0) return +1; // counter clockwiseif (cross(b, c) < 0) return -1; // clockwiseif (dot(b, c) < 0) return +2; // c--a--b on lineif (norm(b) < norm(c)) return -2; // a--b--c on linereturn 0;}bool intersectLL(const L &l, const L &m) {return abs(cross(l[1]-l[0], m[1]-m[0])) > EPS || // non-parallelabs(cross(l[1]-l[0], m[0]-l[0])) < EPS; // same line}bool intersectLS(const L &l, const L &s) {return cross(l[1]-l[0], s[0]-l[0])* // s[0] is left of lcross(l[1]-l[0], s[1]-l[0]) < EPS; // s[1] is right of l}bool intersectLP(const L &l, const P &p) {return abs(cross(l[1]-p, l[0]-p)) < EPS;}bool intersectSS(const L &s, const L &t) {return ccw(s[0],s[1],t[0])*ccw(s[0],s[1],t[1]) <= 0 &&ccw(t[0],t[1],s[0])*ccw(t[0],t[1],s[1]) <= 0;}bool intersectSP(const L &s, const P &p) {return abs(s[0]-p)+abs(s[1]-p)-abs(s[1]-s[0]) < EPS; // triangle inequality}// a1,a2を端点とする線分とb1,b2を端点とする線分の交点計算P intersection_ls(P a1, P a2, P b1, P b2) {P b = b2-b1;ld d1 = abs(cross(b, a1-b1));ld d2 = abs(cross(b, a2-b1));ld t = d1 / (d1 + d2);return a1 + (a2-a1) * t;}P intersection_ls(L const& s1, L const& s2) {return intersection_ls(s1[0], s1[1], s2[0], s2[1]);}typedef vector<P> polygon;enum { OUT, ON, IN };int convex_contains(const polygon &P, const point &p) {const int n = P.size();point g = (P[0] + P[n/3] + P[2*n/3]) / (ld)3.0; // inner-pointint a = 0, b = n;while (a+1 < b) { // invariant: c is in fan g-P[a]-P[b]int c = (a + b) / 2;if (cross(P[a]-g, P[c]-g) > 0) { // angle < 180 degif (cross(P[a]-g, p-g) > 0 && cross(P[c]-g, p-g) < 0) b = c;else a = c;} else {if (cross(P[a]-g, p-g) < 0 && cross(P[c]-g, p-g) > 0) a = c;else b = c;}}b %= n;if (cross(P[a] - p, P[b] - p) < 0) return 0;if (cross(P[a] - p, P[b] - p) > 0) return 2;return 1;}typedef ld number;#define prev(P, i) ( P[(i-1 + P.size()) % P.size()] )#define curr(P, i) ( P[i % P.size()] )#define next(P, i) ( P[(i+1) % P.size()] )vector<point> convex_hull(vector<point> ps) {int n = ps.size(), k = 0;sort(ps.begin(), ps.end());vector<point> ch(2*n);for (int i = 0; i < n; ch[k++] = ps[i++]) // lower-hullwhile (k >= 2 && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) --k;for (int i = n-2, t = k+1; i >= 0; ch[k++] = ps[i--]) // upper-hullwhile (k >= t && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) --k;ch.resize(k-1);return ch;}int is_point_on_line(point a, point b, point c) {return ( cross(b-a, c-a), 0.0 ) <= EPS;}polygon convex_cut(const polygon& P, const L& l) {polygon Q;for (int i = 0; i < P.size(); ++i) {point A = curr(P, i), B = next(P, i);if (ccw(l[0], l[1], A) != -1) Q.push_back(A);if (ccw(l[0], l[1], A)*ccw(l[0], l[1], B) < 0)Q.push_back(intersection_ls(L(A, B), l));}return Q;}polygon convex_and(const polygon& g, const polygon& h) {polygon r = g;rep(i, h.size()) {r = convex_cut(r, L(h[i],h[(i+1)%h.size()]));}return r;}number area2(const polygon& P) {number A = 0;for (int i = 0; i < P.size(); ++i)A += cross(curr(P, i), next(P, i));return A;}long long PickGetI(ld S, ld b) {return round(S - b / 2.0) + 1;}int main() {ld x1, y1, x2, y2, d;cin >> x1 >> y1 >> x2 >> y2 >> d;polygon D;D.emplace_back(d, 0);D.emplace_back(0, d);D.emplace_back(-d, 0);D.emplace_back(0, -d);polygon R;R.emplace_back(x1, y1);R.emplace_back(x2, y1);R.emplace_back(x2, y2);R.emplace_back(x1, y2);auto C = convex_and(D, R);if(C.empty()) {puts("0");exit(0);}ll b = 0;rep(i, C.size()) {auto& tar = C[(i+1)%C.size()];auto& cur = C[i];ll A = abs((ll)(tar.real() - cur.real()));ll B = abs((ll)(tar.imag() - cur.imag()));if(A == 0) {b += B;}else if(B == 0) {b += A;}else {b += __gcd(A, B);}}cout << PickGetI(area2(C) / 2, b) + b << endl;return 0;}