結果
| 問題 |
No.1655 123 Swaps
|
| コンテスト | |
| ユーザー |
Kiri8128
|
| 提出日時 | 2021-06-25 00:00:16 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,842 ms / 2,000 ms |
| コード長 | 2,838 bytes |
| コンパイル時間 | 999 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 227,340 KB |
| 最終ジャッジ日時 | 2024-10-14 02:16:10 |
| 合計ジャッジ時間 | 33,378 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 |
ソースコード
p, g, ig = 924844033, 5, 554906420
W = [pow(g, (p - 1) >> i, p) for i in range(24)]
iW = [pow(ig, (p - 1) >> i, p) for i in range(24)]
def convolve(a, b):
def fft(f):
for l in range(k, 0, -1):
d = 1 << l - 1
U = [1]
for i in range(d):
U.append(U[-1] * W[l] % p)
for i in range(1 << k - l):
for j in range(d):
s = i * 2 * d + j
t = s + d
f[s], f[t] = (f[s] + f[t]) % p, U[j] * (f[s] - f[t]) % p
def ifft(f):
for l in range(1, k + 1):
d = 1 << l - 1
U = [1]
for i in range(d):
U.append(U[-1] * iW[l] % p)
for i in range(1 << k - l):
for j in range(d):
s = i * 2 * d + j
t = s + d
f[s], f[t] = (f[s] + f[t] * U[j]) % p, (f[s] - f[t] * U[j]) % p
n0 = len(a) + len(b) - 1
if len(a) < 50 or len(b) < 50:
ret = [0] * n0
if len(a) > len(b): a, b = b, a
for i, aa in enumerate(a):
for j, bb in enumerate(b):
ret[i+j] = (ret[i+j] + aa * bb) % p
return ret
k = (n0).bit_length()
n = 1 << k
a = a + [0] * (n - len(a))
b = b + [0] * (n - len(b))
fft(a), fft(b)
for i in range(n):
a[i] = a[i] * b[i] % p
ifft(a)
invn = pow(n, p - 2, p)
for i in range(n0):
a[i] = a[i] * invn % p
del a[n0:]
return a
P = 924844033
nn = 600600
fa = [1] * (nn+1)
fainv = [1] * (nn+1)
for i in range(nn):
fa[i+1] = fa[i] * (i+1) % P
fainv[-1] = pow(fa[-1], P-2, P)
for i in range(nn)[::-1]:
fainv[i] = fainv[i+1] * (i+1) % P
def calc(a, b, c):
M = a + b + c
if M % 2: return 0
M //= 2
i3 = pow(3, P - 2, P)
re = 0
A = [[0] * (a + 1) for _ in range(3)]
B = [[0] * (b + 1) for _ in range(3)]
for i in range(a + 1):
A[(2*i-a)%3][i] = fainv[i] * fainv[a-i] % P
for i in range(b + 1):
B[(b-2*i)%3][i] = fainv[i] * fainv[b-i] % P
AB = [[0] * (a + b + 1) for _ in range(2)]
for k1 in range(3):
for k2 in range(3):
k = (k1 + k2) % 3
if k == 2: continue
ab = AB[k]
for i, x in enumerate(convolve(A[k1], B[k2])):
ab[i] = (ab[i] + x) % P
RE = [0] * 2
for k, ab in enumerate(AB):
for i, x in enumerate(ab):
if i > M: continue
j = M - a - b + i
if j < 0: continue
RE[k] = (RE[k] + x * fainv[M-i] * fainv[j]) % P
re = RE[0] - RE[1]
re = re * fa[M] ** 2 % P * 2 * i3 % P
re = (re + fa[M*2] * fainv[a] * fainv[b] * fainv[c] * i3) % P
return re
a, b, c = map(int, input().split())
print(calc(a, b, c))
Kiri8128