結果
| 問題 | No.1584 Stones around Circle Pond |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-07-02 22:11:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,164 bytes |
| コンパイル時間 | 2,410 ms |
| コンパイル使用メモリ | 207,952 KB |
| 最終ジャッジ日時 | 2025-01-22 16:06:35 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 WA * 32 |
ソースコード
#include<bits/stdc++.h>
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0; i < ll(n); ++i)
#define rep2(i, s, n) for (ll i = ll(s); i < ll(n); ++i)
#define rep3(i, s, n, d) for(ll i = ll(s); i < ll(n); i+=d)
#define rep(...) overload4(__VA_ARGS__,rep3,rep2,rep1)(__VA_ARGS__)
#define rrep1(i, n) for (ll i = ll(n)-1; i >= 0; i--)
#define rrep2(i, n, t) for (ll i = ll(n)-1; i >= (ll)t; i--)
#define rrep3(i, n, t, d) for (ll i = ll(n)-1; i >= (ll)t; i-=d)
#define rrep(...) overload4(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define SUM(a) accumulate(all(a),0LL)
#define MIN(a) *min_element(all(a))
#define MAX(a) *max_element(all(a))
#define popcount(x) __builtin_popcountll(x)
#define pb push_back
#define eb emplace_back
#ifdef __LOCAL
#define debug(...) { cout << #__VA_ARGS__; cout << ": "; print(__VA_ARGS__); cout << flush; }
#else
#define debug(...) void(0)
#endif
#define INT(...) int __VA_ARGS__;scan(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__)
using namespace std;
using ll = long long;
using ld = long double;
using P = pair<int, int>;
using LP = pair<ll, ll>;
using vi = vector<int>;
using vvi = vector<vi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vc = vector<char>;
using vvc = vector<vc>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vp = vector<P>;
using vvp = vector<vp>;
template<class S, class T>
istream &operator>>(istream &is, pair<S, T> &p) { return is >> p.first >> p.second; }
template<class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << '{' << p.first << ", " << p.second << '}'; }
template<class S, class T, class U>
istream &operator>>(istream &is, tuple<S, T, U> &t) { return is >> get<0>(t) >> get<1>(t) >> get<2>(t); }
template<class S, class T, class U>
ostream &operator<<(ostream &os, const tuple<S, T, U> &t) {
return os << '{' << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << '}';
}
template<class T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &t:v) { is >> t; }
return is;
}
template<class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
os << '[';
rep(i, v.size())os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
return os << ']';
}
template<class T>
void vecout(const vector<T> &v, char div = '\n') {
rep(i, v.size()) cout << v[i] << (i == int(v.size() - 1) ? '\n' : div);
}
template<class T>
bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
void scan() {}
template<class Head, class... Tail>
void scan(Head &head, Tail &... tail) {
cin >> head;
scan(tail...);
}
template<class T>
void print(const T &t) { cout << t << '\n'; }
template<class Head, class... Tail>
void print(const Head &head, const Tail &... tail) {
cout << head << ' ';
print(tail...);
}
template<class... T>
void fin(const T &... a) {
print(a...);
exit(0);
}
struct Init_io {
Init_io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cout << boolalpha << fixed << setprecision(15);
cerr << boolalpha << fixed << setprecision(15);
}
} init_io;
const string yes[] = {"no", "yes"};
const string Yes[] = {"No", "Yes"};
const string YES[] = {"NO", "YES"};
const int inf = 1001001001;
const ll linf = 1001001001001001001;
template<class T, class S>
vector<T> cumsum(const vector<S> &v, bool shift_one = true) {
int n = v.size();
vector<T> res;
if (shift_one) {
res.resize(n + 1);
rep(i, n) res[i + 1] = res[i] + v[i];
} else {
res.resize(n);
if (n) {
res[0] = v[0];
rep(i, 1, n) res[i] = res[i - 1] + v[i];
}
}
return res;
}
vvi graph(int n, int m, bool directed = false, int origin = 1) {
vvi G(n);
rep(_, m) {
INT(u, v);
u -= origin, v -= origin;
G[u].pb(v);
if (!directed) G[v].pb(u);
}
return G;
}
template<class T>
vector<vector<pair<int, T>>> weighted_graph(int n, int m, bool directed = false, int origin = 1) {
vector<vector<pair<int, T>>> G(n);
rep(_, m) {
int u, v;
T w;
scan(u, v, w);
u -= origin, v -= origin;
G[u].eb(v, w);
if (!directed) G[v].eb(u, w);
}
return G;
}
template<typename T>
class matrix : public vector<vector<T>> {
public:
using vector<vector<T>>::vector;
constexpr int get_h() const { return this->size(); }
constexpr int get_w() const { return (get_h() ? (*this)[0].size() : 0); }
constexpr matrix &operator+=(const matrix &a) {
rep(i, get_h()) rep(j, get_w()) (*this)[i][j] += a[i][j];
return *this;
}
constexpr matrix &operator*=(const int &k) {
rep(i, get_h()) rep(j, get_w()) (*this)[i][j] *= k;
return *this;
}
constexpr matrix &operator-=(const matrix &a) {
*this += a * (-1);
return *this;
}
constexpr matrix operator+(const matrix &a) const { return res(*this) += a; }
constexpr matrix operator*(const int &k) const { return res(*this) *= k; }
constexpr matrix operator-(const matrix &a) const { return res(*this) -= a; }
constexpr matrix operator*(const matrix &a) const {
int h = get_h(), w = get_w(), ah = a.get_h(), aw = a.get_w();
assert(w == ah);
matrix res(h, vector<T>(aw));
rep(i, h) rep(j, w) rep(k, aw) res[i][k] += (*this)[i][j] * a[j][k];
return res;
}
constexpr matrix &operator*=(const matrix &a) { return *this = *this * a; }
constexpr matrix pow(ll t) const {
int h = get_h(), w = get_w();
assert(h == w);
matrix res(h, vector<T>(w)), a(*this);
rep(i, get_h()) res[i][i] = 1;
while (t > 0) {
if (t & 1) res *= a;
t >>= 1;
a *= a;
}
return res;
}
};
using mat = matrix<double>;
const double eps = 1e-9;
// return the rank of the matrix
// O(h * w^2)
template<class T>
int GaussJordan(matrix<T> &a, bool isExtended) {
int rank = 0;
rep(col, a.get_w()) {
if (isExtended and col == a.w - 1) break;
int pivot = -1;
rep(row, rank, a.get_h()) {
if (a[row][col] != 0) pivot = row;
}
if (pivot == -1) continue;
swap(a[pivot], a[rank]);
// fix the value of pivot 1
rrep(col2, a.get_w()) a[rank][col2] /= a[rank][col];
rep(row, a.get_h()) {
if (row == rank) continue;
if (a[row][col] == 0) continue;
T fac = a[row][col];
rep(col2, a.get_w()) a[row][col2] -= a[rank][col2] * fac;
}
rank++;
}
return rank;
}
template<>
int GaussJordan<double>(matrix<double> &a, bool isExtended) {
int rank = 0;
rep(col, a.get_w()) {
if (isExtended and col == a.get_w() - 1) break;
int pivot = -1;
double mx = eps;
rep(row, rank, a.get_h()) {
if (abs(a[row][col]) > mx) {
mx = abs(a[row][col]);
pivot = row;
}
}
if (pivot == -1) continue;
swap(a[pivot], a[rank]);
// fix the value of pivot 1
rrep(col2, a.get_w()) a[rank][col2] /= a[rank][col];
rep(row, a.get_h()) {
if (row == rank) continue;
if (abs(a[row][col]) <= eps) continue;
double fac = a[row][col];
rep(col2, a.get_w()) a[row][col2] -= a[rank][col2] * fac;
}
rank++;
}
return rank;
}
// solve ax = b reference: https://drken1215.hatenablog.com/entry/2019/03/20/202800
// if there is no solution, return empty vector
// otherwise, return one solution (all parameters is fixed 0)
// if T is mint, calculate the numbers of solutions by 'mod^(n-rank)'
// if T is mint, mod must be a prime
template<class T>
vector<T> linear_equation(matrix<T> &a, vector<T> &b) {
assert(a.get_h() == (int) b.size());
matrix<T> m(a.get_h(), a.get_w() + 1);
rep(i, a.get_h()) {
rep(j, a.get_w()) m[i][j] = a[i][j];
m[i][a.get_w()] = b[i];
}
int rank = GaussJordan(m, true);
vector<T> res;
rep(row, rank, a.get_h()) {
if (m[row][a.get_w()] != 0) return res;
}
res.assign(a.get_w(), 0);
rep(i, rank) {
rep(j, a.get_w()) {
if (m[i][j] != 0) {
res[j] = m[i][a.get_w()];
break;
}
}
}
return res;
}
template<>
vd linear_equation<double>(matrix<double> &a, vector<double> &b) {
assert(a.get_h() == (int) b.size());
matrix<double> m(a.get_h(), vd(a.get_w() + 1));
rep(i, a.get_h()) {
rep(j, a.get_w()) m[i][j] = a[i][j];
m[i][a.get_w()] = b[i];
}
int rank = GaussJordan(m, true);
vd res;
rep(row, rank, a.get_h()) {
if (abs(m[row][a.get_w()]) > eps) return res;
}
res.assign(a.get_w(), 0);
rep(i, rank) {
rep(j, a.get_w()) {
if (abs(m[i][j]) > eps) {
res[j] = m[i][a.get_w()];
break;
}
}
}
return res;
}
int main() {
INT(n, l);
vi d(n);
vi b(2 * n);
scan(d, b);
vi x(2 * n);
rep(i, n) x[i] = d[i];
rep(i, n) x[n + i] = l + d[i];
mat mt(2 * n, vd(2 * n));
vd v(2 * n);
rep(i, 2 * n) {
rep(j, 2 * n) {
mt[j][i] = min(abs(x[i] - x[j]), 2 * l - abs(x[i] - x[j]));
}
v[i] = b[i];
}
vd res = linear_equation(mt, v);
print(res.empty() ? "No" : "Yes");
}