結果

問題 No.1584 Stones around Circle Pond
ユーザー hitonanodehitonanode
提出日時 2021-07-02 22:50:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 29,509 bytes
コンパイル時間 2,801 ms
コンパイル使用メモリ 186,432 KB
実行使用メモリ 32,724 KB
最終ジャッジ日時 2024-06-29 12:42:40
合計ジャッジ時間 4,821 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 4 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 WA -
testcase_06 AC 2 ms
5,376 KB
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 2 ms
5,376 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 3 ms
5,376 KB
testcase_17 WA -
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 3 ms
5,376 KB
testcase_20 AC 6 ms
5,376 KB
testcase_21 AC 55 ms
32,328 KB
testcase_22 AC 6 ms
5,376 KB
testcase_23 AC 3 ms
5,376 KB
testcase_24 AC 12 ms
6,016 KB
testcase_25 AC 3 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 4 ms
5,376 KB
testcase_28 AC 4 ms
5,376 KB
testcase_29 AC 30 ms
17,668 KB
testcase_30 AC 4 ms
5,376 KB
testcase_31 AC 12 ms
5,692 KB
testcase_32 AC 16 ms
7,420 KB
testcase_33 AC 6 ms
5,376 KB
testcase_34 AC 5 ms
5,376 KB
testcase_35 AC 59 ms
32,588 KB
testcase_36 AC 5 ms
5,376 KB
testcase_37 AC 4 ms
5,376 KB
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 WA -
testcase_46 AC 3 ms
5,376 KB
testcase_47 WA -
testcase_48 AC 5 ms
5,376 KB
testcase_49 AC 5 ms
5,376 KB
testcase_50 AC 6 ms
5,376 KB
testcase_51 WA -
testcase_52 WA -
testcase_53 WA -
testcase_54 WA -
testcase_55 WA -
testcase_56 WA -
testcase_57 WA -
testcase_58 WA -
testcase_59 WA -
testcase_60 AC 4 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif

// Maximize cx s.t. Ax <= b, x >= 0
// Implementation idea: https://kopricky.github.io/code/Computation_Advanced/simplex.html
// Refer to https://hitonanode.github.io/cplib-cpp/combinatorial_opt/simplex.hpp
template <typename Float = double, int DEPS = 30, bool Randomize = true> struct Simplex {
    const Float EPS = Float(1.0) / (1LL << DEPS);
    int N, M;
    std::vector<int> shuffle_idx;
    std::vector<int> idx;
    std::vector<std::vector<Float>> mat;
    int i_ch, j_ch;

private:
    void _initialize(const std::vector<std::vector<Float>> &A, const std::vector<Float> &b, const std::vector<Float> &c) {
        N = c.size(), M = A.size();

        mat.assign(M + 2, std::vector<Float>(N + 2));
        i_ch = M;
        for (int i = 0; i < M; i++) {
            for (int j = 0; j < N; j++) mat[i][j] = -A[i][j];
            mat[i][N] = 1, mat[i][N + 1] = b[i];
            if (mat[i_ch][N + 1] > mat[i][N + 1]) i_ch = i;
        }
        for (int j = 0; j < N; j++) mat[M][j] = c[j];
        mat[M + 1][N] = -1;

        idx.resize(N + M + 1);
        std::iota(idx.begin(), idx.end(), 0);
    }

    inline Float abs_(Float x) noexcept { return x > -x ? x : -x; }
    void _solve() {
        std::vector<int> jupd;
        for (nb_iter = 0, j_ch = N;; nb_iter++) {
            if (i_ch < M) {
                std::swap(idx[j_ch], idx[i_ch + N + 1]);
                mat[i_ch][j_ch] = Float(1) / mat[i_ch][j_ch];
                jupd.clear();
                for (int j = 0; j < N + 2; j++) {
                    if (j != j_ch) {
                        mat[i_ch][j] *= -mat[i_ch][j_ch];
                        if (abs_(mat[i_ch][j]) > EPS) jupd.push_back(j);
                    }
                }
                for (int i = 0; i < M + 2; i++) {
                    if (abs_(mat[i][j_ch]) < EPS or i == i_ch) continue;
                    for (auto j : jupd) mat[i][j] += mat[i][j_ch] * mat[i_ch][j];
                    mat[i][j_ch] *= mat[i_ch][j_ch];
                }
            }

            j_ch = -1;
            for (int j = 0; j < N + 1; j++) {
                if (j_ch < 0 or idx[j_ch] > idx[j]) {
                    if (mat[M + 1][j] > EPS or (abs_(mat[M + 1][j]) < EPS and mat[M][j] > EPS)) j_ch = j;
                }
            }
            if (j_ch < 0) break;

            i_ch = -1;
            for (int i = 0; i < M; i++) {
                if (mat[i][j_ch] < -EPS) {
                    if (i_ch < 0) {
                        i_ch = i;
                    } else if (mat[i_ch][N + 1] / mat[i_ch][j_ch] - mat[i][N + 1] / mat[i][j_ch] < -EPS) {
                        i_ch = i;
                    } else if (mat[i_ch][N + 1] / mat[i_ch][j_ch] - mat[i][N + 1] / mat[i][j_ch] < EPS and idx[i_ch] > idx[i]) {
                        i_ch = i;
                    }
                }
            }
            if (i_ch < 0) {
                is_infty = true;
                break;
            }
        }
        if (mat[M + 1][N + 1] < -EPS) {
            infeasible = true;
            return;
        }
        x.assign(N, 0);
        for (int i = 0; i < M; i++) {
            if (idx[N + 1 + i] < N) x[idx[N + 1 + i]] = mat[i][N + 1];
        }
        ans = mat[M][N + 1];
    }

public:
    Simplex(std::vector<std::vector<Float>> A, std::vector<Float> b, std::vector<Float> c) {
        is_infty = infeasible = false;

        if (Randomize) {
            std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count());

            std::vector<std::pair<std::vector<Float>, Float>> Abs;
            for (unsigned i = 0; i < A.size(); i++) Abs.emplace_back(A[i], b[i]);
            std::shuffle(Abs.begin(), Abs.end(), rng);
            A.clear(), b.clear();
            for (auto &&Ab : Abs) A.emplace_back(Ab.first), b.emplace_back(Ab.second);

            shuffle_idx.resize(c.size());
            std::iota(shuffle_idx.begin(), shuffle_idx.end(), 0);
            std::shuffle(shuffle_idx.begin(), shuffle_idx.end(), rng);
            auto Atmp = A;
            auto ctmp = c;
            for (unsigned i = 0; i < A.size(); i++) {
                for (unsigned j = 0; j < A[i].size(); j++) A[i][j] = Atmp[i][shuffle_idx[j]];
            }
            for (unsigned j = 0; j < c.size(); j++) c[j] = ctmp[shuffle_idx[j]];
        }

        _initialize(A, b, c);
        _solve();

        if (Randomize and x.size() == c.size()) {
            auto xtmp = x;
            for (unsigned j = 0; j < c.size(); j++) x[shuffle_idx[j]] = xtmp[j];
        }
    }
    unsigned nb_iter;
    bool is_infty;
    bool infeasible;
    std::vector<Float> x;
    Float ans;
};

uint32_t rand_int() // XorShift random integer generator
{
    static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
    uint32_t t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }

void No() {
    puts("No");
    exit(0);
}


template <int md> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
    using lint = long long;
    MDCONST static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val;
    MDCONST ModInt() : val(0) {}
    MDCONST ModInt &_setval(lint v) { return val = (v >= md ? v - md : v), *this; }
    MDCONST ModInt(lint v) { _setval(v % md + md); }
    MDCONST explicit operator bool() const { return val != 0; }
    MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
    MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + md); }
    MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % md); }
    MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % md); }
    MDCONST ModInt operator-() const { return ModInt()._setval(md - val); }
    MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val); }
    friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val + md); }
    friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val % md); }
    friend MDCONST ModInt operator/(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.inv() % md);
    }
    MDCONST bool operator==(const ModInt &x) const { return val == x.val; }
    MDCONST bool operator!=(const ModInt &x) const { return val != x.val; }
    MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; }
    MDCONST ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static std::vector<ModInt> facs, facinvs, invs;
    MDCONST static void _precalculation(int N) {
        int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }
    MDCONST lint inv() const {
        if (this->val < std::min(md >> 1, 1 << 21)) {
            while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val].val;
        } else {
            return this->pow(md - 2).val;
        }
    }
    MDCONST ModInt fac() const {
        while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val];
    }
    MDCONST ModInt facinv() const {
        while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val];
    }
    MDCONST ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                               : ModInt(k).fac() * ModInt(2).pow(k);
    }
    MDCONST ModInt nCr(const ModInt &r) const {
        return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv() * r.facinv();
    }
    MDCONST ModInt nPr(const ModInt &r) const {
        return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv();
    }

    ModInt sqrt() const {
        if (val == 0) return 0;
        if (md == 2) return val;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val, md - x.val));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

template <typename T> struct matrix {
    int H, W;
    std::vector<T> elem;
    typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }
    inline T &at(int i, int j) { return elem[i * W + j]; }
    inline T get(int i, int j) const { return elem[i * W + j]; }
    int height() const { return H; }
    int width() const { return W; }
    std::vector<std::vector<T>> vecvec() const {
        std::vector<std::vector<T>> ret(H);
        for (int i = 0; i < H; i++) {
            std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));
        }
        return ret;
    }
    operator std::vector<std::vector<T>>() const { return vecvec(); }
    matrix() = default;
    matrix(int H, int W) : H(H), W(W), elem(H * W) {}
    matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {
        for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));
    }

    static matrix Identity(int N) {
        matrix ret(N, N);
        for (int i = 0; i < N; i++) ret.at(i, i) = 1;
        return ret;
    }

    matrix operator-() const {
        matrix ret(H, W);
        for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i];
        return ret;
    }
    matrix operator*(const T &v) const {
        matrix ret = *this;
        for (auto &x : ret.elem) x *= v;
        return ret;
    }
    matrix operator/(const T &v) const {
        matrix ret = *this;
        const T vinv = T(1) / v;
        for (auto &x : ret.elem) x *= vinv;
        return ret;
    }
    matrix operator+(const matrix &r) const {
        matrix ret = *this;
        for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i];
        return ret;
    }
    matrix operator-(const matrix &r) const {
        matrix ret = *this;
        for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i];
        return ret;
    }
    matrix operator*(const matrix &r) const {
        matrix ret(H, r.W);
        for (int i = 0; i < H; i++) {
            for (int k = 0; k < W; k++) {
                for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j);
            }
        }
        return ret;
    }
    matrix &operator*=(const T &v) { return *this = *this * v; }
    matrix &operator/=(const T &v) { return *this = *this / v; }
    matrix &operator+=(const matrix &r) { return *this = *this + r; }
    matrix &operator-=(const matrix &r) { return *this = *this - r; }
    matrix &operator*=(const matrix &r) { return *this = *this * r; }
    bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }
    bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }
    bool operator<(const matrix &r) const { return elem < r.elem; }
    matrix pow(int64_t n) const {
        matrix ret = Identity(H);
        bool ret_is_id = true;
        if (n == 0) return ret;
        for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {
            if (!ret_is_id) ret *= ret;
            if ((n >> i) & 1) ret *= (*this), ret_is_id = false;
        }
        return ret;
    }
    std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const {
        matrix x = *this;
        while (n) {
            if (n & 1) vec = x * vec;
            x *= x;
            n >>= 1;
        }
        return vec;
    };
    matrix transpose() const {
        matrix ret(W, H);
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);
        }
        return ret;
    }
    // Gauss-Jordan elimination
    // - Require inverse for every non-zero element
    // - Complexity: O(H^2 W)
    template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr>
    static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
        int piv = -1;
        for (int j = h; j < mtr.H; j++) {
            if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j;
        }
        return piv;
    }
    template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr>
    static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
        for (int j = h; j < mtr.H; j++) {
            if (mtr.get(j, c)) return j;
        }
        return -1;
    }
    matrix gauss_jordan() const {
        int c = 0;
        matrix mtr(*this);
        std::vector<int> ws;
        ws.reserve(W);
        for (int h = 0; h < H; h++) {
            if (c == W) break;
            int piv = choose_pivot(mtr, h, c);
            if (piv == -1) {
                c++;
                h--;
                continue;
            }
            if (h != piv) {
                for (int w = 0; w < W; w++) {
                    std::swap(mtr[piv][w], mtr[h][w]);
                    mtr.at(piv, w) *= -1; // To preserve sign of determinant
                }
            }
            ws.clear();
            for (int w = c; w < W; w++) {
                if (mtr.at(h, w) != 0) ws.emplace_back(w);
            }
            const T hcinv = T(1) / mtr.at(h, c);
            for (int hh = 0; hh < H; hh++)
                if (hh != h) {
                    const T coeff = mtr.at(hh, c) * hcinv;
                    for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff;
                    mtr.at(hh, c) = 0;
                }
            c++;
        }
        return mtr;
    }
    int rank_of_gauss_jordan() const {
        for (int i = H * W - 1; i >= 0; i--) {
            if (elem[i]) return i / W + 1;
        }
        return 0;
    }
    T determinant_of_upper_triangle() const {
        T ret = 1;
        for (int i = 0; i < H; i++) ret *= get(i, i);
        return ret;
    }
    int inverse() {
        assert(H == W);
        std::vector<std::vector<T>> ret = Identity(H), tmp = *this;
        int rank = 0;
        for (int i = 0; i < H; i++) {
            int ti = i;
            while (ti < H and tmp[ti][i] == 0) ti++;
            if (ti == H) {
                continue;
            } else {
                rank++;
            }
            ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]);
            T inv = T(1) / tmp[i][i];
            for (int j = 0; j < W; j++) ret[i][j] *= inv;
            for (int j = i + 1; j < W; j++) tmp[i][j] *= inv;
            for (int h = 0; h < H; h++) {
                if (i == h) continue;
                const T c = -tmp[h][i];
                for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c;
                for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c;
            }
        }
        *this = ret;
        return rank;
    }
    friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) {
        assert(m.W == int(v.size()));
        std::vector<T> ret(m.H);
        for (int i = 0; i < m.H; i++) {
            for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j];
        }
        return ret;
    }
    friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) {
        assert(int(v.size()) == m.H);
        std::vector<T> ret(m.W);
        for (int i = 0; i < m.H; i++) {
            for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j);
        }
        return ret;
    }
    std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; }
    std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); }
    friend std::ostream &operator<<(std::ostream &os, const matrix &x) {
        os << "[(" << x.H << " * " << x.W << " matrix)";
        os << "\n[column sums: ";
        for (int j = 0; j < x.W; j++) {
            T s = 0;
            for (int i = 0; i < x.H; i++) s += x.get(i, j);
            os << s << ",";
        }
        os << "]";
        for (int i = 0; i < x.H; i++) {
            os << "\n[";
            for (int j = 0; j < x.W; j++) os << x.get(i, j) << ",";
            os << "]";
        }
        os << "]\n";
        return os;
    }
    friend std::istream &operator>>(std::istream &is, matrix &x) {
        for (auto &v : x.elem) is >> v;
        return is;
    }
};


// Solve Ax = b for T = ModInt<PRIME>
// - retval: {one of the solution, {freedoms}} (if solution exists)
//           {{}, {}} (otherwise)
// Complexity:
// - Yield one of the possible solutions: O(H^2 W) (H: # of eqs., W: # of variables)
// - Enumerate all of the bases: O(HW(H + W))
template <typename T>
std::pair<std::vector<T>, std::vector<std::vector<T>>> system_of_linear_equations(matrix<T> A, std::vector<T> b) {
    int H = A.H, W = A.W;
    matrix<T> M(H, W + 1);
    for (int i = 0; i < H; i++) {
        for (int j = 0; j < W; j++) M[i][j] = A[i][j];
        M[i][W] = b[i];
    }
    M = M.gauss_jordan();
    std::vector<int> ss(W, -1);
    for (int i = 0; i < H; i++) {
        int j = 0;
        while (j <= W and M[i][j] == 0) j++;
        if (j == W) { // No solution
            return {{}, {}};
        }
        if (j < W) ss[j] = i;
    }
    std::vector<T> x(W);
    std::vector<std::vector<T>> D;
    for (int j = 0; j < W; j++) {
        if (ss[j] == -1) {
            std::vector<T> d(W);
            d[j] = 1;
            for (int jj = 0; jj < j; jj++) {
                if (ss[jj] != -1) d[jj] = -M[ss[jj]][j] / M[ss[jj]][jj];
            }
            D.emplace_back(d);
        } else
            x[j] = M[ss[j]][W] / M[ss[j]][j];
    }
    return std::make_pair(x, D);
}

// CUT begin
// Solve ax+by=gcd(a, b)
template <typename Int> Int extgcd(Int a, Int b, Int &x, Int &y) {
    Int d = a;
    if (b != 0) {
        d = extgcd(b, a % b, y, x), y -= (a / b) * x;
    } else {
        x = 1, y = 0;
    }
    return d;
}
// Calculate a^(-1) (MOD m) s if gcd(a, m) == 1
// Calculate x s.t. ax == gcd(a, m) MOD m
template <typename Int> Int mod_inverse(Int a, Int m) {
    Int x, y;
    extgcd<Int>(a, m, x, y);
    x %= m;
    return x + (x < 0) * m;
}

// Require: 1 <= b
// return: (g, x) s.t. g = gcd(a, b), xa = g MOD b, 0 <= x < b/g
template <typename Int> constexpr std::pair<Int, Int> inv_gcd(Int a, Int b) {
    a %= b;
    if (a < 0) a += b;
    if (a == 0) return {b, 0};
    Int s = b, t = a, m0 = 0, m1 = 1;
    while (t) {
        Int u = s / t;
        s -= t * u, m0 -= m1 * u;
        auto tmp = s;
        s = t, t = tmp, tmp = m0, m0 = m1, m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

template <typename Int> constexpr std::pair<Int, Int> crt(const std::vector<Int> &r, const std::vector<Int> &m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    // Contracts: 0 <= r0 < m0
    Int r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        Int r1 = r[i] % m[i], m1 = m[i];
        if (r1 < 0) r1 += m1;
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }
        Int g, im;
        std::tie(g, im) = inv_gcd<Int>(m0, m1);

        Int u1 = m1 / g;
        if ((r1 - r0) % g) return {0, 0};

        Int x = (r1 - r0) / g % u1 * im % u1;
        r0 += x * m0;
        m0 *= u1;
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

template <int MOD>
vector<ModInt<MOD>> solve(int N, int L, vector<vector<int>> dist, vector<int> B) {
    using mint = ModInt<MOD>;
    matrix<mint> mat(N * 2, N + 1);
    vector<mint> vec(B.size());
    REP(i, B.size()) vec[i] = B[i];

    REP(i, N * 2) {
        REP(j, N) {
            mat[i][j] = dist[i][j] - L;
        }
        mat[i][N] = L;
    }
    dbg(mat);
    dbg(vec);
    auto [sol, freedom] = system_of_linear_equations(mat, vec);
    dbg(sol);
    return sol;
};

int main() {
    int N, L;
    cin >> N >> L;
    vector<int> d(N);
    cin >> d;
    REP(i, N) d.push_back(d[i] + L);

    vector<int> B(N * 2);
    cin >> B;
    vector dist(N * 2, vector<int>(N * 2));
    REP(i, dist.size()) REP(j, dist[i].size()) {
        auto dd = abs(d[i] - d[j]);
        dist[i][j] = min(dd, L * 2 - dd);
    }
    dbg(dist);
    constexpr int MOD1 = 1000000007;
    constexpr int MOD2 = 1000000009;
    auto s1 = solve<MOD1>(N, L, dist, B);
    auto s2 = solve<MOD2>(N, L, dist, B);
    if (s1.empty()) No();
    vector<lint> s(s1.size());
    REP(i, s.size()) {
        auto [r, m] = crt<lint>(vector<lint>{s1[i].val, s2[i].val}, vector<lint>{MOD1, MOD2});
        if (r > 1e12) {
            r = -((m - r) % m);
        }
        s[i] = r;
    }
    dbg(s);
    lint su = 0;
    REP(i, N) su += abs(s[i]);
    if (su > s.back()) No();
    puts("Yes");
    return 0;
    // while (true) {
    //     dbg(B);
    //     int i = max_element(B.begin(), B.end()) - B.begin();
    //     i = (i + N) % (N * 2);
    //     if (B[i] <= 0) break;
    //     REP(j, N * 2) B[j] -= dist[i][j];
    // }
    // if (*min_element(B.begin(), B.end()) < 0) puts("No");
    // else puts("Yes");

    vector<int> Bin(N * 2);
    cin >> Bin;
    using Float = double;
    vector<vector<Float>> A;
    vector<Float> b, c(N + 1);
    dbg(d);

    REP(i, N * 2) {
        vector<Float> a(N + 1);
        REP(j, N) {
            int t = abs(d[j] - d[i]);
            a[j] = min(t, L * 2 - t);
        }
        A.push_back(a);
        b.push_back(Bin[i]);
        for (auto &x : a) x = -x;
        A.push_back(a);
        b.push_back(-Bin[i]);
    }

    Simplex<Float, 20, false> simplex(A, b, c);
    dbg(simplex.infeasible);
    dbg(simplex.x);
    if (simplex.infeasible) No();
    for (auto x : simplex.x) {
        if (abs(x - llround(x)) > 1e-5) No();
    }
    puts("Yes");
}
 
0