結果
問題 | No.1584 Stones around Circle Pond |
ユーザー | hitonanode |
提出日時 | 2021-07-02 23:01:30 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 29,409 bytes |
コンパイル時間 | 2,937 ms |
コンパイル使用メモリ | 186,560 KB |
実行使用メモリ | 32,720 KB |
最終ジャッジ日時 | 2024-06-29 12:53:03 |
合計ジャッジ時間 | 5,160 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 59 ms
32,188 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 3 ms
5,376 KB |
testcase_17 | WA | - |
testcase_18 | AC | 3 ms
5,376 KB |
testcase_19 | AC | 3 ms
5,376 KB |
testcase_20 | AC | 7 ms
5,376 KB |
testcase_21 | AC | 4 ms
5,376 KB |
testcase_22 | AC | 6 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 8 ms
5,376 KB |
testcase_25 | AC | 4 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 4 ms
5,376 KB |
testcase_28 | AC | 5 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 4 ms
5,376 KB |
testcase_31 | AC | 12 ms
5,692 KB |
testcase_32 | AC | 17 ms
7,504 KB |
testcase_33 | AC | 7 ms
5,376 KB |
testcase_34 | AC | 5 ms
5,376 KB |
testcase_35 | AC | 7 ms
5,376 KB |
testcase_36 | AC | 7 ms
5,376 KB |
testcase_37 | AC | 3 ms
5,376 KB |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | AC | 3 ms
5,376 KB |
testcase_47 | WA | - |
testcase_48 | AC | 5 ms
5,376 KB |
testcase_49 | AC | 20 ms
11,688 KB |
testcase_50 | AC | 34 ms
17,908 KB |
testcase_51 | WA | - |
testcase_52 | WA | - |
testcase_53 | WA | - |
testcase_54 | WA | - |
testcase_55 | AC | 3 ms
5,376 KB |
testcase_56 | AC | 3 ms
5,376 KB |
testcase_57 | AC | 6 ms
5,376 KB |
testcase_58 | WA | - |
testcase_59 | WA | - |
testcase_60 | WA | - |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) (x) #define dbgif(cond, x) 0 #endif // Maximize cx s.t. Ax <= b, x >= 0 // Implementation idea: https://kopricky.github.io/code/Computation_Advanced/simplex.html // Refer to https://hitonanode.github.io/cplib-cpp/combinatorial_opt/simplex.hpp template <typename Float = double, int DEPS = 30, bool Randomize = true> struct Simplex { const Float EPS = Float(1.0) / (1LL << DEPS); int N, M; std::vector<int> shuffle_idx; std::vector<int> idx; std::vector<std::vector<Float>> mat; int i_ch, j_ch; private: void _initialize(const std::vector<std::vector<Float>> &A, const std::vector<Float> &b, const std::vector<Float> &c) { N = c.size(), M = A.size(); mat.assign(M + 2, std::vector<Float>(N + 2)); i_ch = M; for (int i = 0; i < M; i++) { for (int j = 0; j < N; j++) mat[i][j] = -A[i][j]; mat[i][N] = 1, mat[i][N + 1] = b[i]; if (mat[i_ch][N + 1] > mat[i][N + 1]) i_ch = i; } for (int j = 0; j < N; j++) mat[M][j] = c[j]; mat[M + 1][N] = -1; idx.resize(N + M + 1); std::iota(idx.begin(), idx.end(), 0); } inline Float abs_(Float x) noexcept { return x > -x ? x : -x; } void _solve() { std::vector<int> jupd; for (nb_iter = 0, j_ch = N;; nb_iter++) { if (i_ch < M) { std::swap(idx[j_ch], idx[i_ch + N + 1]); mat[i_ch][j_ch] = Float(1) / mat[i_ch][j_ch]; jupd.clear(); for (int j = 0; j < N + 2; j++) { if (j != j_ch) { mat[i_ch][j] *= -mat[i_ch][j_ch]; if (abs_(mat[i_ch][j]) > EPS) jupd.push_back(j); } } for (int i = 0; i < M + 2; i++) { if (abs_(mat[i][j_ch]) < EPS or i == i_ch) continue; for (auto j : jupd) mat[i][j] += mat[i][j_ch] * mat[i_ch][j]; mat[i][j_ch] *= mat[i_ch][j_ch]; } } j_ch = -1; for (int j = 0; j < N + 1; j++) { if (j_ch < 0 or idx[j_ch] > idx[j]) { if (mat[M + 1][j] > EPS or (abs_(mat[M + 1][j]) < EPS and mat[M][j] > EPS)) j_ch = j; } } if (j_ch < 0) break; i_ch = -1; for (int i = 0; i < M; i++) { if (mat[i][j_ch] < -EPS) { if (i_ch < 0) { i_ch = i; } else if (mat[i_ch][N + 1] / mat[i_ch][j_ch] - mat[i][N + 1] / mat[i][j_ch] < -EPS) { i_ch = i; } else if (mat[i_ch][N + 1] / mat[i_ch][j_ch] - mat[i][N + 1] / mat[i][j_ch] < EPS and idx[i_ch] > idx[i]) { i_ch = i; } } } if (i_ch < 0) { is_infty = true; break; } } if (mat[M + 1][N + 1] < -EPS) { infeasible = true; return; } x.assign(N, 0); for (int i = 0; i < M; i++) { if (idx[N + 1 + i] < N) x[idx[N + 1 + i]] = mat[i][N + 1]; } ans = mat[M][N + 1]; } public: Simplex(std::vector<std::vector<Float>> A, std::vector<Float> b, std::vector<Float> c) { is_infty = infeasible = false; if (Randomize) { std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count()); std::vector<std::pair<std::vector<Float>, Float>> Abs; for (unsigned i = 0; i < A.size(); i++) Abs.emplace_back(A[i], b[i]); std::shuffle(Abs.begin(), Abs.end(), rng); A.clear(), b.clear(); for (auto &&Ab : Abs) A.emplace_back(Ab.first), b.emplace_back(Ab.second); shuffle_idx.resize(c.size()); std::iota(shuffle_idx.begin(), shuffle_idx.end(), 0); std::shuffle(shuffle_idx.begin(), shuffle_idx.end(), rng); auto Atmp = A; auto ctmp = c; for (unsigned i = 0; i < A.size(); i++) { for (unsigned j = 0; j < A[i].size(); j++) A[i][j] = Atmp[i][shuffle_idx[j]]; } for (unsigned j = 0; j < c.size(); j++) c[j] = ctmp[shuffle_idx[j]]; } _initialize(A, b, c); _solve(); if (Randomize and x.size() == c.size()) { auto xtmp = x; for (unsigned j = 0; j < c.size(); j++) x[shuffle_idx[j]] = xtmp[j]; } } unsigned nb_iter; bool is_infty; bool infeasible; std::vector<Float> x; Float ans; }; uint32_t rand_int() // XorShift random integer generator { static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123; uint32_t t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } double rand_double() { return (double)rand_int() / UINT32_MAX; } void No() { puts("No"); exit(0); } template <int md> struct ModInt { #if __cplusplus >= 201402L #define MDCONST constexpr #else #define MDCONST #endif using lint = long long; MDCONST static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; MDCONST ModInt() : val(0) {} MDCONST ModInt &_setval(lint v) { return val = (v >= md ? v - md : v), *this; } MDCONST ModInt(lint v) { _setval(v % md + md); } MDCONST explicit operator bool() const { return val != 0; } MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + md); } MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % md); } MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % md); } MDCONST ModInt operator-() const { return ModInt()._setval(md - val); } MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; } MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; } MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; } MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val); } friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val + md); } friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val % md); } friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.inv() % md); } MDCONST bool operator==(const ModInt &x) const { return val == x.val; } MDCONST bool operator!=(const ModInt &x) const { return val != x.val; } MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; } MDCONST ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static std::vector<ModInt> facs, facinvs, invs; MDCONST static void _precalculation(int N) { int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } MDCONST lint inv() const { if (this->val < std::min(md >> 1, 1 << 21)) { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val].val; } else { return this->pow(md - 2).val; } } MDCONST ModInt fac() const { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val]; } MDCONST ModInt facinv() const { while (this->val >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val]; } MDCONST ModInt doublefac() const { lint k = (this->val + 1) / 2; return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } MDCONST ModInt nCr(const ModInt &r) const { return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv() * r.facinv(); } MDCONST ModInt nPr(const ModInt &r) const { return (this->val < r.val) ? 0 : this->fac() * (*this - r).facinv(); } ModInt sqrt() const { if (val == 0) return 0; if (md == 2) return val; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val, md - x.val)); } }; template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0}; template <typename T> struct matrix { int H, W; std::vector<T> elem; typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; } inline T &at(int i, int j) { return elem[i * W + j]; } inline T get(int i, int j) const { return elem[i * W + j]; } int height() const { return H; } int width() const { return W; } std::vector<std::vector<T>> vecvec() const { std::vector<std::vector<T>> ret(H); for (int i = 0; i < H; i++) { std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i])); } return ret; } operator std::vector<std::vector<T>>() const { return vecvec(); } matrix() = default; matrix(int H, int W) : H(H), W(W), elem(H * W) {} matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) { for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem)); } static matrix Identity(int N) { matrix ret(N, N); for (int i = 0; i < N; i++) ret.at(i, i) = 1; return ret; } matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; } matrix operator*(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x *= v; return ret; } matrix operator/(const T &v) const { matrix ret = *this; const T vinv = T(1) / v; for (auto &x : ret.elem) x *= vinv; return ret; } matrix operator+(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; } matrix operator-(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; } matrix operator*(const matrix &r) const { matrix ret(H, r.W); for (int i = 0; i < H; i++) { for (int k = 0; k < W; k++) { for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j); } } return ret; } matrix &operator*=(const T &v) { return *this = *this * v; } matrix &operator/=(const T &v) { return *this = *this / v; } matrix &operator+=(const matrix &r) { return *this = *this + r; } matrix &operator-=(const matrix &r) { return *this = *this - r; } matrix &operator*=(const matrix &r) { return *this = *this * r; } bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; } bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; } bool operator<(const matrix &r) const { return elem < r.elem; } matrix pow(int64_t n) const { matrix ret = Identity(H); bool ret_is_id = true; if (n == 0) return ret; for (int i = 63 - __builtin_clzll(n); i >= 0; i--) { if (!ret_is_id) ret *= ret; if ((n >> i) & 1) ret *= (*this), ret_is_id = false; } return ret; } std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const { matrix x = *this; while (n) { if (n & 1) vec = x * vec; x *= x; n >>= 1; } return vec; }; matrix transpose() const { matrix ret(W, H); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j); } return ret; } // Gauss-Jordan elimination // - Require inverse for every non-zero element // - Complexity: O(H^2 W) template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { int piv = -1; for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j; } return piv; } template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c)) return j; } return -1; } matrix gauss_jordan() const { int c = 0; matrix mtr(*this); std::vector<int> ws; ws.reserve(W); for (int h = 0; h < H; h++) { if (c == W) break; int piv = choose_pivot(mtr, h, c); if (piv == -1) { c++; h--; continue; } if (h != piv) { for (int w = 0; w < W; w++) { std::swap(mtr[piv][w], mtr[h][w]); mtr.at(piv, w) *= -1; // To preserve sign of determinant } } ws.clear(); for (int w = c; w < W; w++) { if (mtr.at(h, w) != 0) ws.emplace_back(w); } const T hcinv = T(1) / mtr.at(h, c); for (int hh = 0; hh < H; hh++) if (hh != h) { const T coeff = mtr.at(hh, c) * hcinv; for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff; mtr.at(hh, c) = 0; } c++; } return mtr; } int rank_of_gauss_jordan() const { for (int i = H * W - 1; i >= 0; i--) { if (elem[i]) return i / W + 1; } return 0; } T determinant_of_upper_triangle() const { T ret = 1; for (int i = 0; i < H; i++) ret *= get(i, i); return ret; } int inverse() { assert(H == W); std::vector<std::vector<T>> ret = Identity(H), tmp = *this; int rank = 0; for (int i = 0; i < H; i++) { int ti = i; while (ti < H and tmp[ti][i] == 0) ti++; if (ti == H) { continue; } else { rank++; } ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]); T inv = T(1) / tmp[i][i]; for (int j = 0; j < W; j++) ret[i][j] *= inv; for (int j = i + 1; j < W; j++) tmp[i][j] *= inv; for (int h = 0; h < H; h++) { if (i == h) continue; const T c = -tmp[h][i]; for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c; for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c; } } *this = ret; return rank; } friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) { assert(m.W == int(v.size())); std::vector<T> ret(m.H); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j]; } return ret; } friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) { assert(int(v.size()) == m.H); std::vector<T> ret(m.W); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j); } return ret; } std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; } std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); } friend std::ostream &operator<<(std::ostream &os, const matrix &x) { os << "[(" << x.H << " * " << x.W << " matrix)"; os << "\n[column sums: "; for (int j = 0; j < x.W; j++) { T s = 0; for (int i = 0; i < x.H; i++) s += x.get(i, j); os << s << ","; } os << "]"; for (int i = 0; i < x.H; i++) { os << "\n["; for (int j = 0; j < x.W; j++) os << x.get(i, j) << ","; os << "]"; } os << "]\n"; return os; } friend std::istream &operator>>(std::istream &is, matrix &x) { for (auto &v : x.elem) is >> v; return is; } }; // Solve Ax = b for T = ModInt<PRIME> // - retval: {one of the solution, {freedoms}} (if solution exists) // {{}, {}} (otherwise) // Complexity: // - Yield one of the possible solutions: O(H^2 W) (H: # of eqs., W: # of variables) // - Enumerate all of the bases: O(HW(H + W)) template <typename T> std::pair<std::vector<T>, std::vector<std::vector<T>>> system_of_linear_equations(matrix<T> A, std::vector<T> b) { int H = A.H, W = A.W; matrix<T> M(H, W + 1); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) M[i][j] = A[i][j]; M[i][W] = b[i]; } M = M.gauss_jordan(); std::vector<int> ss(W, -1); for (int i = 0; i < H; i++) { int j = 0; while (j <= W and M[i][j] == 0) j++; if (j == W) { // No solution return {{}, {}}; } if (j < W) ss[j] = i; } std::vector<T> x(W); std::vector<std::vector<T>> D; for (int j = 0; j < W; j++) { if (ss[j] == -1) { std::vector<T> d(W); d[j] = 1; for (int jj = 0; jj < j; jj++) { if (ss[jj] != -1) d[jj] = -M[ss[jj]][j] / M[ss[jj]][jj]; } D.emplace_back(d); } else x[j] = M[ss[j]][W] / M[ss[j]][j]; } return std::make_pair(x, D); } // CUT begin // Solve ax+by=gcd(a, b) template <typename Int> Int extgcd(Int a, Int b, Int &x, Int &y) { Int d = a; if (b != 0) { d = extgcd(b, a % b, y, x), y -= (a / b) * x; } else { x = 1, y = 0; } return d; } // Calculate a^(-1) (MOD m) s if gcd(a, m) == 1 // Calculate x s.t. ax == gcd(a, m) MOD m template <typename Int> Int mod_inverse(Int a, Int m) { Int x, y; extgcd<Int>(a, m, x, y); x %= m; return x + (x < 0) * m; } // Require: 1 <= b // return: (g, x) s.t. g = gcd(a, b), xa = g MOD b, 0 <= x < b/g template <typename Int> constexpr std::pair<Int, Int> inv_gcd(Int a, Int b) { a %= b; if (a < 0) a += b; if (a == 0) return {b, 0}; Int s = b, t = a, m0 = 0, m1 = 1; while (t) { Int u = s / t; s -= t * u, m0 -= m1 * u; auto tmp = s; s = t, t = tmp, tmp = m0, m0 = m1, m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } template <typename Int> constexpr std::pair<Int, Int> crt(const std::vector<Int> &r, const std::vector<Int> &m) { assert(r.size() == m.size()); int n = int(r.size()); // Contracts: 0 <= r0 < m0 Int r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); Int r1 = r[i] % m[i], m1 = m[i]; if (r1 < 0) r1 += m1; if (m0 < m1) { std::swap(r0, r1); std::swap(m0, m1); } if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } Int g, im; std::tie(g, im) = inv_gcd<Int>(m0, m1); Int u1 = m1 / g; if ((r1 - r0) % g) return {0, 0}; Int x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } template <int MOD> vector<ModInt<MOD>> solve(int N, int L, vector<vector<int>> dist, vector<int> B) { using mint = ModInt<MOD>; matrix<mint> mat(N * 2, N + 1); vector<mint> vec(B.size()); REP(i, B.size()) vec[i] = B[i]; REP(i, N * 2) { REP(j, N) { mat[i][j] = dist[i][j]; } mat[i][N] = L; } dbg(mat); dbg(vec); auto [sol, freedom] = system_of_linear_equations(mat, vec); dbg(sol); return sol; }; int main() { int N, L; cin >> N >> L; vector<int> d(N); cin >> d; REP(i, N) d.push_back(d[i] + L); vector<int> B(N * 2); cin >> B; vector dist(N * 2, vector<int>(N * 2)); REP(i, dist.size()) REP(j, dist[i].size()) { auto dd = abs(d[i] - d[j]); dist[i][j] = min(dd, L * 2 - dd); } dbg(dist); constexpr int MOD1 = 1000000007; constexpr int MOD2 = 1000000009; constexpr lint m1m2 = lint(MOD1) * MOD2; auto s1 = solve<MOD1>(N, L, dist, B); auto s2 = solve<MOD2>(N, L, dist, B); dbg(s1); dbg(s2); if (s1.empty()) No(); vector<lint> s(s1.size()); REP(i, s.size()) { if (s1[i].val == s2[i].val) s[i] = s1[i].val; else s[i] = -(-s1[i]).val; auto [r, m] = crt<lint>(vector<lint>{s1[i].val, s2[i].val}, vector<lint>{MOD1, MOD2}); r = r * (m1m2 / m); m = m1m2; if (r > 1e12) { dbg(r); dbg(m); r = -((m - r) % m); } s[i] = r; } dbg(s); lint su = 0; REP(i, N) su += abs(s[i]); if (su > s.back()) No(); puts("Yes"); return 0; using Float = double; vector<vector<Float>> A; vector<Float> b, c(N + 1); dbg(d); REP(i, N * 2) { vector<Float> a(N + 1); REP(j, N) { a[j] = dist[i][j] - L; } a.back() = L; A.push_back(a); b.push_back(B[i]); for (auto &x : a) x = -x; A.push_back(a); b.push_back(-B[i]); } dbg(A); dbg(b); dbg(c); Simplex<Float, 20, false> simplex(A, b, c); dbg(simplex.infeasible); dbg(simplex.x); if (simplex.infeasible) No(); for (auto x : simplex.x) { if (abs(x - llround(x)) > 1e-5) No(); } puts("Yes"); }