結果
問題 | No.1582 Vertexes vs Edges |
ユーザー | mkawa2 |
提出日時 | 2021-07-02 23:11:50 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 642 ms / 2,000 ms |
コード長 | 6,046 bytes |
コンパイル時間 | 120 ms |
コンパイル使用メモリ | 82,012 KB |
実行使用メモリ | 155,496 KB |
最終ジャッジ日時 | 2024-06-29 13:00:35 |
合計ジャッジ時間 | 12,404 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 57 ms
68,352 KB |
testcase_01 | AC | 60 ms
68,608 KB |
testcase_02 | AC | 55 ms
68,736 KB |
testcase_03 | AC | 60 ms
69,248 KB |
testcase_04 | AC | 167 ms
81,692 KB |
testcase_05 | AC | 351 ms
144,788 KB |
testcase_06 | AC | 146 ms
82,568 KB |
testcase_07 | AC | 160 ms
88,992 KB |
testcase_08 | AC | 229 ms
112,200 KB |
testcase_09 | AC | 334 ms
144,464 KB |
testcase_10 | AC | 243 ms
119,608 KB |
testcase_11 | AC | 153 ms
83,672 KB |
testcase_12 | AC | 218 ms
106,068 KB |
testcase_13 | AC | 354 ms
123,624 KB |
testcase_14 | AC | 342 ms
123,840 KB |
testcase_15 | AC | 479 ms
138,056 KB |
testcase_16 | AC | 280 ms
108,308 KB |
testcase_17 | AC | 344 ms
121,332 KB |
testcase_18 | AC | 502 ms
153,944 KB |
testcase_19 | AC | 314 ms
123,836 KB |
testcase_20 | AC | 346 ms
116,964 KB |
testcase_21 | AC | 329 ms
114,016 KB |
testcase_22 | AC | 409 ms
146,860 KB |
testcase_23 | AC | 241 ms
102,144 KB |
testcase_24 | AC | 180 ms
89,692 KB |
testcase_25 | AC | 306 ms
112,512 KB |
testcase_26 | AC | 264 ms
103,348 KB |
testcase_27 | AC | 493 ms
134,364 KB |
testcase_28 | AC | 230 ms
97,012 KB |
testcase_29 | AC | 409 ms
127,320 KB |
testcase_30 | AC | 299 ms
111,776 KB |
testcase_31 | AC | 435 ms
130,444 KB |
testcase_32 | AC | 229 ms
101,832 KB |
testcase_33 | AC | 614 ms
155,332 KB |
testcase_34 | AC | 642 ms
155,496 KB |
testcase_35 | AC | 640 ms
155,448 KB |
testcase_36 | AC | 54 ms
68,596 KB |
testcase_37 | AC | 53 ms
68,488 KB |
testcase_38 | AC | 54 ms
68,480 KB |
ソースコード
import sys # sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = 10**16 # md = 998244353 md = 10**9+7 from typing import NamedTuple, Optional, List, cast class MFGraph: class Edge(NamedTuple): src: int dst: int cap: int flow: int class _Edge: def __init__(self, dst: int, cap: int) -> None: self.dst = dst self.cap = cap self.rev: Optional[MFGraph._Edge] = None def __init__(self, n: int) -> None: self._n = n self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)] self._edges: List[MFGraph._Edge] = [] def add_edge(self, src: int, dst: int, cap: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MFGraph._Edge(dst, cap) re = MFGraph._Edge(src, 0) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def add_undir_edge(self, src: int, dst: int, cap: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MFGraph._Edge(dst, cap) re = MFGraph._Edge(src, cap) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def get_edge(self, i: int) -> Edge: assert 0 <= i < len(self._edges) e = self._edges[i] re = cast(MFGraph._Edge, e.rev) return MFGraph.Edge( re.dst, e.dst, e.cap+re.cap, re.cap ) def edges(self) -> List[Edge]: return [self.get_edge(i) for i in range(len(self._edges))] def change_edge(self, i: int, new_cap: int, new_flow: int) -> None: assert 0 <= i < len(self._edges) assert 0 <= new_flow <= new_cap e = self._edges[i] e.cap = new_cap-new_flow assert e.rev is not None e.rev.cap = new_flow def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int: assert 0 <= s < self._n assert 0 <= t < self._n assert s != t if flow_limit is None: flow_limit = cast(int, sum(e.cap for e in self._g[s])) current_edge = [0]*self._n level = [0]*self._n def fill(arr: List[int], value: int) -> None: for i in range(len(arr)): arr[i] = value def bfs() -> bool: fill(level, self._n) queue = [] q_front = 0 queue.append(s) level[s] = 0 while q_front < len(queue): v = queue[q_front] q_front += 1 next_level = level[v]+1 for e in self._g[v]: if e.cap == 0 or level[e.dst] <= next_level: continue level[e.dst] = next_level if e.dst == t: return True queue.append(e.dst) return False def dfs(lim: int) -> int: stack = [] edge_stack: List[MFGraph._Edge] = [] stack.append(t) while stack: v = stack[-1] if v == s: flow = min(lim, min(e.cap for e in edge_stack)) for e in edge_stack: e.cap -= flow assert e.rev is not None e.rev.cap += flow return flow next_level = level[v]-1 while current_edge[v] < len(self._g[v]): e = self._g[v][current_edge[v]] re = cast(MFGraph._Edge, e.rev) if level[e.dst] != next_level or re.cap == 0: current_edge[v] += 1 continue stack.append(e.dst) edge_stack.append(re) break else: stack.pop() if edge_stack: edge_stack.pop() level[v] = self._n return 0 flow = 0 while flow < flow_limit: if not bfs(): break fill(current_edge, 0) while flow < flow_limit: f = dfs(flow_limit-flow) flow += f if f == 0: break return flow def min_cut(self, s: int) -> List[bool]: visited = [False]*self._n stack = [s] visited[s] = True while stack: v = stack.pop() for e in self._g[v]: if e.cap > 0 and not visited[e.dst]: visited[e.dst] = True stack.append(e.dst) return visited n = II() mf = MFGraph(n+2) to = [[] for _ in range(n)] for _ in range(n-1): u, v = LI1() to[u].append(v) to[v].append(u) color = [-1]*n color[0] = 0 stack = [0] while stack: u = stack.pop() for v in to[u]: if color[v] != -1: continue color[v] = 1-color[u] stack.append(v) if color[u]: mf.add_edge(v, u, inf) else: mf.add_edge(u, v, inf) for u, c in enumerate(color): if c: mf.add_edge(u, n+1, 1) else: mf.add_edge(n, u, 1) ans = mf.flow(n, n+1) print(ans)