結果
問題 | No.1567 Integer Coefficient Equation |
ユーザー | hitonanode |
提出日時 | 2021-07-03 14:35:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 127 ms / 2,000 ms |
コード長 | 9,870 bytes |
コンパイル時間 | 1,762 ms |
コンパイル使用メモリ | 149,248 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-30 06:19:58 |
合計ジャッジ時間 | 10,288 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 90 ms
6,812 KB |
testcase_01 | AC | 93 ms
6,944 KB |
testcase_02 | AC | 116 ms
6,940 KB |
testcase_03 | AC | 113 ms
6,940 KB |
testcase_04 | AC | 113 ms
6,944 KB |
testcase_05 | AC | 113 ms
6,940 KB |
testcase_06 | AC | 112 ms
6,940 KB |
testcase_07 | AC | 90 ms
6,944 KB |
testcase_08 | AC | 89 ms
6,940 KB |
testcase_09 | AC | 90 ms
6,944 KB |
testcase_10 | AC | 90 ms
6,940 KB |
testcase_11 | AC | 90 ms
6,944 KB |
testcase_12 | AC | 91 ms
6,940 KB |
testcase_13 | AC | 90 ms
6,940 KB |
testcase_14 | AC | 90 ms
6,944 KB |
testcase_15 | AC | 91 ms
6,944 KB |
testcase_16 | AC | 91 ms
6,940 KB |
testcase_17 | AC | 124 ms
6,940 KB |
testcase_18 | AC | 123 ms
6,940 KB |
testcase_19 | AC | 125 ms
6,940 KB |
testcase_20 | AC | 126 ms
6,944 KB |
testcase_21 | AC | 127 ms
6,944 KB |
testcase_22 | AC | 125 ms
6,944 KB |
testcase_23 | AC | 125 ms
6,944 KB |
testcase_24 | AC | 124 ms
6,944 KB |
testcase_25 | AC | 126 ms
6,940 KB |
testcase_26 | AC | 124 ms
6,944 KB |
testcase_27 | AC | 125 ms
6,940 KB |
testcase_28 | AC | 123 ms
6,940 KB |
testcase_29 | AC | 123 ms
6,944 KB |
testcase_30 | AC | 123 ms
6,940 KB |
testcase_31 | AC | 122 ms
6,944 KB |
testcase_32 | AC | 123 ms
6,944 KB |
testcase_33 | AC | 123 ms
6,944 KB |
testcase_34 | AC | 126 ms
6,944 KB |
testcase_35 | AC | 124 ms
6,944 KB |
testcase_36 | AC | 123 ms
6,940 KB |
testcase_37 | AC | 124 ms
6,940 KB |
testcase_38 | AC | 122 ms
6,940 KB |
testcase_39 | AC | 121 ms
6,940 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) (x) #define dbgif(cond, x) 0 #endif // Linear sieve algorithm for fast prime factorization // Complexity: O(N) time, O(N) space: // - MAXN = 10^7: ~44 MB, 80~100 ms (Codeforces / AtCoder GCC, C++17) // - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17) // Reference: // [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers," // Communications of the ACM, 21(12), 999-1003, 1978. // - https://cp-algorithms.com/algebra/prime-sieve-linear.html // - https://37zigen.com/linear-sieve/ struct Sieve { std::vector<int> min_factor; std::vector<int> primes; Sieve(int MAXN) : min_factor(MAXN + 1) { for (int d = 2; d <= MAXN; d++) { if (!min_factor[d]) { min_factor[d] = d; primes.emplace_back(d); } for (const auto &p : primes) { if (p > min_factor[d] or d * p > MAXN) break; min_factor[d * p] = p; } } } // Prime factorization for 1 <= x <= MAXN^2 // Complexity: O(log x) (x <= MAXN) // O(MAXN / log MAXN) (MAXN < x <= MAXN^2) template <typename T> std::map<T, int> factorize(T x) { std::map<T, int> ret; assert(x > 0 and x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1)); for (const auto &p : primes) { if (x < T(min_factor.size())) break; while (!(x % p)) x /= p, ret[p]++; } if (x >= T(min_factor.size())) ret[x]++, x = 1; while (x > 1) ret[min_factor[x]]++, x /= min_factor[x]; return ret; } // Enumerate divisors of 1 <= x <= MAXN^2 // Be careful of highly composite numbers https://oeis.org/A002182/list https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt // (n, (# of div. of n)): 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720 template <typename T> std::vector<T> divisors(T x) { std::vector<T> ret{1}; for (const auto p : factorize(x)) { int n = ret.size(); for (int i = 0; i < n; i++) { for (T a = 1, d = 1; d <= p.second; d++) { a *= p.first; ret.push_back(ret[i] * a); } } } return ret; // NOT sorted } // Moebius function Table, (-1)^{# of different prime factors} for square-free x // return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683 std::vector<int> GenerateMoebiusFunctionTable() { std::vector<int> ret(min_factor.size()); for (unsigned i = 1; i < min_factor.size(); i++) { if (i == 1) ret[i] = 1; else if ((i / min_factor[i]) % min_factor[i] == 0) ret[i] = 0; else ret[i] = -ret[i / min_factor[i]]; } return ret; } // Calculate [0^K, 1^K, ..., nmax^K] in O(nmax) // Note: **0^0 == 1** template <typename MODINT> std::vector<MODINT> enumerate_kth_pows(long long K, int nmax) { assert(nmax < int(min_factor.size())); assert(K >= 0); if (K == 0) return std::vector<MODINT>(nmax + 1, 1); std::vector<MODINT> ret(nmax + 1); ret[0] = 0, ret[1] = 1; for (int n = 2; n <= nmax; n++) { if (min_factor[n] == n) { ret[n] = MODINT(n).pow(K); } else { ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]]; } } return ret; } }; Sieve sieve(400000); // (can factorize n <= 10^9) vector<int> precalc; int solve() { int P, L, R; cin >> P >> L >> R; L -= P, R -= P; int ret = 0; dbg(pint(L, R)); if (L < 0) { ret += precalc[abs(L)] - precalc[max(-R - 1, 0)]; } dbg(ret); if (R >= 0) { ret += precalc[R] - precalc[max(L - 1, 0)]; } dbg(ret); if (L <= 0 and 0 <= R) ret++; dbg(ret); return ret; } int main() { precalc.resize(400001); FOR(x, 2, precalc.size()) { auto f = sieve.factorize(x); vector<int> degs; for (auto [p, d] : f) degs.push_back(d); if (f.size() >= 3) precalc[x] = 1; if (f.size() == 1) { if (degs[0] >= 4) precalc[x] = 1; } if (f.size() == 2) { if (degs[0] >= 2 or degs[1] >= 2) precalc[x] = 1; } } FOR(i, 1, precalc.size()) if (precalc[i]) { for (int j = i * 2; j < int(precalc.size()); j += i) precalc[j] = 1; } FOR(i, 1, precalc.size()) precalc[i] += precalc[i - 1]; int T; cin >> T; while (T--) cout << solve() << '\n'; }