結果
| 問題 |
No.1600 Many Shortest Path Problems
|
| コンテスト | |
| ユーザー |
ei1333333
|
| 提出日時 | 2021-07-10 01:04:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,176 bytes |
| コンパイル時間 | 3,872 ms |
| コンパイル使用メモリ | 223,248 KB |
| 最終ジャッジ日時 | 2025-01-22 23:21:51 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 2 |
| other | AC * 22 WA * 26 TLE * 3 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
//const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
/**
* @brief Splay-Tree-Base(Splay木)
*/
template< typename Node >
struct SplayTreeBase {
public:
using NP = Node *;
bool is_root(const NP &t) const { return !t->p || (t->p->l != t && t->p->r != t); }
inline size_t count(const NP &t) const { return t ? t->sz : 0; }
void splay(NP t) {
push(t);
while(!is_root(t)) {
auto *q = t->p;
if(!is_root(t)) {
push(q), push(t);
if(q->l == t) rotr(t);
else rotl(t);
} else {
auto *r = q->p;
push(r), push(q), push(t);
if(r->l == q) {
if(q->l == t) rotr(q), rotr(t);
else rotl(t), rotr(t);
} else {
if(q->r == t) rotl(q), rotl(t);
else rotr(t), rotl(t);
}
}
}
}
NP erase(NP t) {
splay(t);
Node *x = t->l, *y = t->r;
delete t;
if(!x) {
t = y;
if(t) t->p = nullptr;
} else if(!y) {
t = x;
t->p = nullptr;
} else {
x->p = nullptr;
t = get_right(x);
splay(t);
t->r = y;
y->p = t;
}
return t;
}
NP splay_front(NP t) {
splay(t);
while(t->l) t = t->l;
splay(t);
return t;
}
NP splay_back(NP t) {
splay(t);
while(t->r) t = t->r;
splay(t);
return t;
}
pair< NP, NP > split(NP t, int k) {
if(!t) return {nullptr, nullptr};
push(t);
if(k <= count(t->l)) {
auto x = split(t->l, k);
t->l = x.second;
t->p = nullptr;
if(x.second) x.second->p = t;
return {x.first, update(t)};
} else {
auto x = split(t->r, k - count(t->l) - 1);
t->r = x.first;
t->p = nullptr;
if(x.first) x.first->p = t;
return {update(t), x.second};
}
}
template< typename... Args >
NP merge(NP p, Args... args) {
return merge(p, merge(args...));
}
NP merge(NP l, NP r) {
if(!l && !r) return nullptr;
if(!l) return splay(r), r;
if(!r) return splay(l), l;
splay(l), splay(r);
l = splay_back(l);
l->r = r;
r->p = l;
update(l);
return l;
}
tuple< NP, NP, NP > split3(NP t, int a, int b) {
splay(t);
auto x = split(t, a);
auto y = split(x.second, b - a);
return make_tuple(x.first, y.first, y.second);
}
virtual void push(NP t) = 0;
virtual Node *update(NP t) = 0;
private:
void rotr(NP t) {
auto *x = t->p, *y = x->p;
if((x->l = t->r)) t->r->p = x;
t->r = x, x->p = t;
update(x), update(t);
if((t->p = y)) {
if(y->l == x) y->l = t;
if(y->r == x) y->r = t;
update(y);
}
}
void rotl(NP t) {
auto *x = t->p, *y = x->p;
if((x->r = t->l)) t->l->p = x;
t->l = x, x->p = t;
update(x), update(t);
if((t->p = y)) {
if(y->l == x) y->l = t;
if(y->r == x) y->r = t;
update(y);
}
}
NP build(int l, int r, const vector< NP > &v) {
if(l + 1 >= r) return v[l];
return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
}
protected:
NP build_node(const vector< NP > &v) {
return build(0, v.size(), v);
}
NP insert_node(NP t, int k, NP v) {
splay(t);
auto x = split(t, k);
return merge(x.first, v, x.second);
}
NP erase_node(NP t, int k) {
splay(t);
auto x = split(t, k);
auto y = split(x.second, 1);
delete y.first;
return merge(x.first, y.second);
}
};
/**
* @brief Reversible-Splay-Tree(反転可能Splay木)
*/
template< typename Tp >
struct ReversibleSplayTreeNode {
using T = Tp;
ReversibleSplayTreeNode *l, *r, *p;
T key, sum;
bool rev;
ReversibleSplayTreeNode() : ReversibleSplayTreeNode(Tp()) {}
ReversibleSplayTreeNode(const T &key) :
key(key), sum(key), rev(false), l(nullptr), r(nullptr), p(nullptr) {}
};
template< typename Np >
struct ReversibleSplayTree : SplayTreeBase< Np > {
public:
using Node = Np;
using T = typename Node::T;
using super = SplayTreeBase< Node >;
using NP = typename super::NP;
using super::splay;
using super::split;
using super::count;
using super::merge;
using super::build_node;
using super::insert_node;
inline const T &sum(const NP t) { return t ? t->sum : 0; }
NP alloc(const T &x) { return new Node(x); }
T query(NP &t, int a, int b) {
splay(t);
auto x = split(t, a);
auto y = split(x.second, b - a);
auto ret = sum(y.first);
t = merge(x.first, y.first, y.second);
return ret;
}
NP build(const vector< T > &v) {
vector< NP > vs(v.size());
for(int i = 0; i < v.size(); i++) vs[i] = alloc(v[i]);
return build_node(vs);
}
void toggle(NP t) {
swap(t->l, t->r);
t->rev ^= true;
}
NP update(NP t) override {
t->sum = t->key;
if(t->l) t->sum += t->l->sum;
if(t->r) t->sum += t->r->sum;
return t;
}
void push(NP t) override {
if(t->rev) {
if(t->l) toggle(t->l);
if(t->r) toggle(t->r);
t->rev = false;
}
}
NP insert(NP t, int k, const T &x) {
return insert_node(t, k, alloc(x));
}
NP set_element(NP t, int k, const T &x) {
splay(t);
return imp_set_element(t, k, x);
}
pair< NP, NP > split_lower_bound(NP t, const T &key) {
if(!t) return {nullptr, nullptr};
push(t);
if(key <= t->key) {
auto x = split_lower_bound(t->l, key);
t->l = x.second;
t->p = nullptr;
if(x.second) x.second->p = t;
return {x.first, update(t)};
} else {
auto x = split_lower_bound(t->r, key);
t->r = x.first;
t->p = nullptr;
if(x.first) x.first->p = t;
return {update(t), x.second};
}
}
private:
NP imp_set_element(NP t, int k, const T &x) {
push(t);
if(k < count(t->l)) {
return imp_set_element(t->l, k, x);
} else if(k == count(t->l)) {
t->key = x;
splay(t);
return t;
} else {
return imp_set_element(t->r, k - count(t->l) - 1, x);
}
}
};
template< typename T >
using RST = ReversibleSplayTree< ReversibleSplayTreeNode< T > >;
/**
* @brief Link-Cut-Tree
*/
template< typename STp >
struct LinkCutTree : STp {
using ST = STp;
using ST::ST;
using Node = typename ST::Node;
Node *expose(Node *t) {
Node *rp = nullptr;
for(Node *cur = t; cur; cur = cur->p) {
this->splay(cur);
cur->r = rp;
this->update(cur);
rp = cur;
}
this->splay(t);
return rp;
}
void link(Node *child, Node *parent) {
expose(child);
expose(parent);
child->p = parent;
parent->r = child;
this->update(parent);
}
void cut(Node *child) {
expose(child);
auto *parent = child->l;
child->l = nullptr;
parent->p = nullptr;
this->update(child);
}
void evert(Node *t) {
expose(t);
this->toggle(t);
this->push(t);
}
Node *lca(Node *u, Node *v) {
expose(u);
return expose(v);
}
Node *get_kth(Node *x, int k) {
expose(x);
while(x) {
this->push(x);
if(x->r && x->r->sz > k) {
x = x->r;
} else {
if(x->r) k -= x->r->sz;
if(k == 0) return x;
k -= 1;
x = x->l;
}
}
return nullptr;
}
Node *get_root(Node *x) {
expose(x);
while(x->l) {
this->push(x);
x = x->l;
}
return x;
}
};
/**
* @brief Union-Find
* @docs docs/union-find.md
*/
struct UnionFind {
vector< int > data;
UnionFind() = default;
explicit UnionFind(size_t sz) : data(sz, -1) {}
bool unite(int x, int y) {
x = find(x), y = find(y);
if(x == y) return false;
if(data[x] > data[y]) swap(x, y);
data[x] += data[y];
data[y] = x;
return true;
}
int find(int k) {
if(data[k] < 0) return (k);
return data[k] = find(data[k]);
}
int size(int k) {
return -data[find(k)];
}
bool same(int x, int y) {
return find(x) == find(y);
}
};
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< mod >;
int main() {
int N, M;
cin >> N >> M;
using LCT = LinkCutTree< RST< modint > >;
LCT lct;
vector< LCT::Node * > vs(N), es(M);
for(int i = 0; i < N; i++) vs[i] = lct.alloc(0);
modint cost = 1;
UnionFind uf(N);
vector< int > A(M), B(M);
vector< int > type(M);
vector< vector< pair< int, int > > > g(N);
vector< set< int > > qs(N);
for(int i = 0; i < M; i++) {
cost *= 2;
cin >> A[i] >> B[i];
--A[i], --B[i];
es[i] = lct.alloc(cost);
if(uf.unite(A[i], B[i])) {
lct.evert(vs[A[i]]);
lct.link(vs[A[i]], es[i]);
lct.link(es[i], vs[B[i]]);
g[A[i]].emplace_back(B[i], i);
g[B[i]].emplace_back(A[i], i);
type[i] = 1;
} else {
qs[A[i]].emplace(i);
qs[B[i]].emplace(i);
}
}
vector< int > dep(N);
MFP([&](auto rec, int idx, int par, int d) -> void {
dep[idx] = d;
for(auto &e : g[idx]) {
int to = e.first;
if(to != par) {
rec(to, idx, d + 1);
}
}
})(0, -1, 0);
int Q;
cin >> Q;
vector< int > ans(Q, -1);
vector< int > X(Q), Y(Q), Z(Q);
vector< vector< int > > sub(N);
for(int i = 0; i < Q; i++) {
cin >> X[i] >> Y[i] >> Z[i];
--X[i], --Y[i], --Z[i];
auto check = [&]() -> bool {
lct.evert(es[Z[i]]);
return lct.lca(vs[X[i]], vs[Y[i]]) != es[Z[i]];
};
if(type[Z[i]] == 0 or check()) {
lct.evert(vs[X[i]]);
lct.expose(vs[Y[i]]);
ans[i] = (vs[Y[i]]->sum).x;
} else {
sub[dep[A[Z[i]]] > dep[B[Z[i]]] ? A[Z[i]] : B[Z[i]]].emplace_back(i);
}
}
MFP([&](auto rec, int idx, int par) -> void {
for(auto &e : g[idx]) {
int to = e.first;
if(to != par) {
rec(to, idx);
if(qs[to].empty()) continue;
if(sub[to].empty()) continue;
{
lct.evert(es[e.second]);
lct.cut(vs[idx]);
lct.cut(vs[to]);
int p = *begin(qs[to]);
lct.evert(vs[A[p]]);
lct.link(vs[A[p]], es[p]);
lct.link(es[p], vs[B[p]]);
for(auto &i : sub[to]) {
lct.evert(vs[X[i]]);
lct.expose(vs[Y[i]]);
ans[i] = (vs[Y[i]]->sum).x;
}
lct.evert(es[p]);
lct.cut(vs[A[p]]);
lct.cut(vs[B[p]]);
lct.evert(vs[to]);
lct.link(vs[to], es[e.second]);
lct.link(es[e.second], vs[idx]);
}
if(qs[idx].size() < qs[to].size()) {
qs[idx].swap(qs[to]);
}
for(auto p : qs[to]) {
if(qs[idx].count(p)) qs[idx].erase(p);
else qs[idx].emplace(p);
}
}
}
})(0, -1);
for(int i = 0; i < Q; i++) {
cout << ans[i] << "\n";
}
}
ei1333333