結果

問題 No.886 Direct
ユーザー yuruhiya
提出日時 2021-07-10 19:21:54
言語 Crystal
(1.14.0)
結果
AC  
実行時間 543 ms / 4,000 ms
コード長 16,492 bytes
コンパイル時間 13,243 ms
コンパイル使用メモリ 295,040 KB
実行使用メモリ 183,232 KB
最終ジャッジ日時 2024-07-02 02:45:40
合計ジャッジ時間 18,166 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# require "/math/Mint"
# require "../atcoder/src/Math"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module AtCoder
# Implements [ACL's Math library](https://atcoder.github.io/ac-library/master/document_en/math.html)
module Math
def self.extended_gcd(a, b)
last_remainder, remainder = a.abs, b.abs
x, last_x, y, last_y = 0_i64, 1_i64, 1_i64, 0_i64
while remainder != 0
new_last_remainder = remainder
quotient, remainder = last_remainder.divmod(remainder)
last_remainder = new_last_remainder
x, last_x = last_x - quotient * x, x
y, last_y = last_y - quotient * y, y
end
return last_remainder, last_x * (a < 0 ? -1 : 1)
end
# Implements atcoder::inv_mod(value, modulo).
def self.inv_mod(value, modulo)
gcd, inv = extended_gcd(value, modulo)
if gcd != 1
raise ArgumentError.new("#{value} and #{modulo} are not coprime")
end
inv % modulo
end
# Simplified AtCoder::Math.pow_mod with support of Int64
def self.pow_mod(base, exponent, modulo)
if exponent == 0
return base.class.zero + 1
end
if base == 0
return base
end
b = exponent > 0 ? base : inv_mod(base, modulo)
e = exponent.abs
ret = 1_i64
while e > 0
if e % 2 == 1
ret = mul_mod(ret, b, modulo)
end
b = mul_mod(b, b, modulo)
e //= 2
end
ret
end
# Caluculates a * b % mod without overflow detection
@[AlwaysInline]
def self.mul_mod(a : Int64, b : Int64, mod : Int64)
if mod < Int32::MAX
return a * b % mod
end
# 31-bit width
a_high = (a >> 32).to_u64
# 32-bit width
a_low = (a & 0xFFFFFFFF).to_u64
# 31-bit width
b_high = (b >> 32).to_u64
# 32-bit width
b_low = (b & 0xFFFFFFFF).to_u64
# 31-bit + 32-bit + 1-bit = 64-bit
c = a_high * b_low + b_high * a_low
c_high = c >> 32
c_low = c & 0xFFFFFFFF
# 31-bit + 31-bit
res_high = a_high * b_high + c_high
# 32-bit + 32-bit
res_low = a_low * b_low
res_low_high = res_low >> 32
res_low_low = res_low & 0xFFFFFFFF
# Overflow
if res_low_high + c_low >= 0x100000000
res_high += 1
end
res_low = (((res_low_high + c_low) & 0xFFFFFFFF) << 32) | res_low_low
(((res_high.to_i128 << 64) | res_low) % mod).to_i64
end
@[AlwaysInline]
def self.mul_mod(a, b, mod)
typeof(mod).new(a.to_i64 * b % mod)
end
# Implements atcoder::crt(remainders, modulos).
def self.crt(remainders, modulos)
raise ArgumentError.new unless remainders.size == modulos.size
total_modulo = 1_i64
answer = 0_i64
remainders.zip(modulos).each do |(remainder, modulo)|
gcd, p = extended_gcd(total_modulo, modulo)
if (remainder - answer) % gcd != 0
return 0_i64, 0_i64
end
tmp = (remainder - answer) // gcd * p % (modulo // gcd)
answer += total_modulo * tmp
total_modulo *= modulo // gcd
end
return answer % total_modulo, total_modulo
end
# Implements atcoder::floor_sum(n, m, a, b).
def self.floor_sum(n, m, a, b)
n, m, a, b = n.to_i64, m.to_i64, a.to_i64, b.to_i64
res = 0_i64
if a < 0
a2 = a % m
res -= n * (n - 1) // 2 * ((a2 - a) // m)
a = a2
end
if b < 0
b2 = b % m
res -= n * ((b2 - b) // m)
b = b2
end
res + floor_sum_unsigned(n, m, a, b)
end
private def self.floor_sum_unsigned(n, m, a, b)
res = 0_i64
loop do
if a >= m
res += n * (n - 1) // 2 * (a // m)
a = a % m
end
if b >= m
res += n * (b // m)
b = b % m
end
y_max = a * n + b
break if y_max < m
n = y_max // m
b = y_max % m
m, a = a, m
end
res
end
end
end
macro static_modint(name, mod)
struct {{name}}
MOD = {{mod}}i64
def self.zero
new
end
def self.raw(value : Int64)
result = new
result.value = value
result
end
getter value : Int64
def initialize
@value = 0i64
end
def initialize(value)
@value = value.to_i64 % MOD
end
def initialize(m : self)
@value = m.value
end
protected def value=(value : Int64)
@value = value
end
def ==(m : self)
value == m.value
end
def ==(m)
value == m
end
def + : self
self
end
def - : self
self.class.raw(value != 0 ? MOD &- value : 0i64)
end
def +(v)
self + self.class.new(v)
end
def +(m : self)
x = value &+ m.value
x &-= MOD if x >= MOD
self.class.raw(x)
end
def -(v)
self - self.class.new(v)
end
def -(m : self)
x = value &- m.value
x &+= MOD if x < 0
self.class.raw(x)
end
def *(v)
self * self.class.new(v)
end
def *(m : self)
self.class.new(value &* m.value)
end
def /(v)
self / self.class.new(v)
end
def /(m : self)
raise DivisionByZeroError.new if m.value == 0
a, b, u, v = m.value, MOD, 1i64, 0i64
while b != 0
t = a // b
a &-= t &* b
a, b = b, a
u &-= t &* v
u, v = v, u
end
self.class.new(value &* u)
end
def //(v)
self / v
end
def **(exponent : Int)
t, res = self, self.class.raw(1i64)
while exponent > 0
res *= t if exponent & 1 == 1
t *= t
exponent >>= 1
end
res
end
{% for op in %w[< <= > >=] %}
def {{op.id}}(other)
raise NotImplementedError.new({{op}})
end
{% end %}
def inv
self.class.raw AtCoder::Math.inv_mod(value, MOD)
end
def succ
self.class.raw(value != MOD &- 1 ? value &+ 1 : 0i64)
end
def pred
self.class.raw(value != 0 ? value &- 1 : MOD &- 1)
end
def abs
self
end
def abs2
self * self
end
def to_i64 : Int64
value
end
delegate to_s, to: @value
delegate inspect, to: @value
end
{% to = ("to_" + name.stringify.downcase.gsub(/mint|modint/, "m")).id %}
struct Int
{% for op in %w[+ - * / //] %}
def {{op.id}}(value : {{name}})
{{to}} {{op.id}} value
end
{% end %}
{% for op in %w[< <= > >=] %}
def {{op.id}}(m : {{name}})
raise NotImplementedError.new({{op}})
end
{% end %}
def {{to}} : {{name}}
{{name}}.new(self)
end
end
class String
def {{to}} : {{name}}
{{name}}.new(self)
end
end
end
static_modint(Mint, 1000000007)
static_modint(Mint2, 998244353)
# require "/math/GCD"
# require "/atcoder/src/Prime"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# require "./Math.cr"
module AtCoder
# Implements [Ruby's Prime library](https://ruby-doc.com/stdlib/libdoc/prime/rdoc/Prime.html).
#
# ```
# AtCoder::Prime.first(7) # => [2, 3, 5, 7, 11, 13, 17]
# ```
module Prime
extend self
include Enumerable(Int64)
@@primes = [
2_i64, 3_i64, 5_i64, 7_i64, 11_i64, 13_i64, 17_i64, 19_i64,
23_i64, 29_i64, 31_i64, 37_i64, 41_i64, 43_i64, 47_i64,
53_i64, 59_i64, 61_i64, 67_i64, 71_i64, 73_i64, 79_i64,
83_i64, 89_i64, 97_i64, 101_i64,
]
def each
index = 0
loop do
yield get_nth_prime(index)
index += 1
end
end
def prime_division(value : Int)
raise DivisionByZeroError.new if value == 0
int = typeof(value)
factors = [] of Tuple(typeof(value), typeof(value))
if value < 0
value = value.abs
factors << {int.new(-1), int.new(1)}
end
until prime?(value) || value == 1
factor = value
until prime?(factor)
factor = find_factor(factor)
end
count = 0
while value % factor == 0
value //= factor
count += 1
end
factors << {int.new(factor), int.new(count)}
end
if value > 1
factors << {value, int.new(1)}
end
factors.sort_by! { |(factor, _)| factor }
end
private def find_factor(n : Int)
# Factor of 4 cannot be discovered by Pollard's Rho with f(x) = x^x+1
if n == 4
typeof(n).new(2)
else
pollard_rho(n).not_nil!
end
end
# Get single factor by Pollard's Rho Algorithm
private def pollard_rho(n : Int)
typeof(n).new(1).upto(n) do |i|
x = i
y = pollard_random_f(x, n)
loop do
x = pollard_random_f(x, n)
y = pollard_random_f(pollard_random_f(y, n), n)
gcd = (x - y).gcd(n)
if gcd == n
break
end
if gcd != 1
return gcd
end
end
end
end
private def pollard_random_f(n : Int, mod : Int)
(AtCoder::Math.mul_mod(n, n, mod) + 1) % mod
end
private def extract_prime_division_base(prime_divisions_class : Array({T, T}).class) forall T
T
end
def int_from_prime_division(prime_divisions : Array({Int, Int}))
int_class = extract_prime_division_base(prime_divisions.class)
prime_divisions.reduce(int_class.new(1)) { |i, (factor, exponent)| i * factor ** exponent }
end
def prime?(value : Int)
# Obvious patterns
return false if value < 2
return true if value <= 3
return false if value.even?
return true if value < 9
if value < 0xffff
return false unless typeof(value).new(30).gcd(value % 30) == 1
7.step(by: 30, to: value) do |base|
break if base * base > value
if {0, 4, 6, 10, 12, 16, 22, 24}.any? { |i| value % (base + i) == 0 }
return false
end
end
return true
end
miller_rabin(value.to_i64)
end
private def miller_rabin(value)
d = value - 1
s = 0_i64
until d.odd?
d >>= 1
s += 1
end
miller_rabin_bases(value).each do |base|
next if base == value
x = AtCoder::Math.pow_mod(base.to_i64, d, value)
next if x == 1 || x == value - 1
is_composite = s.times.all? do
x = AtCoder::Math.mul_mod(x, x, value)
x != value - 1
end
return false if is_composite
end
true
end
# We can reduce time complexity of Miller-Rabin tests by testing against
# predefined bases which is enough to test against primarity in the given range.
# https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
# ameba:disable Metrics/CyclomaticComplexity
private def miller_rabin_bases(value)
case
when value < 1_373_653_i64
[2, 3]
when value < 9_080_191_i64
[31, 73]
when value < 25_326_001_i64
[2, 3, 5]
when value < 3_215_031_751_i64
[2, 3, 5, 7]
when value < 4_759_123_141_i64
[2, 7, 61]
when value < 1_122_004_669_633_i64
[2, 13, 23, 1662803]
when value < 2_152_302_898_747_i64
[2, 3, 5, 7, 11]
when value < 3_474_749_660_383_i64
[2, 3, 5, 7, 11, 13]
when value < 341_550_071_728_321_i64
[2, 3, 5, 7, 11, 13, 17]
when value < 3_825_123_056_546_413_051_i64
[2, 3, 5, 7, 11, 13, 17, 19, 23]
else
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
end
end
private def get_nth_prime(n)
while @@primes.size <= n
generate_primes
end
@@primes[n]
end
# Doubles the size of the cached prime array and performs the
# Sieve of Eratosthenes on it.
private def generate_primes
new_primes_size = @@primes.size < 1_000_000 ? @@primes.size : 1_000_000
new_primes = Array(Int64).new(new_primes_size) { |i| @@primes.last + (i + 1) * 2 }
new_primes_max = new_primes.last
@@primes.each do |prime|
next if prime == 2
break if prime * prime > new_primes_max
# Here I use the technique of the Sieve of Sundaram. We can
# only test against the odd multiple of the given prime.
# min_composite is the minimum number that is greater than
# the last confirmed prime, and is an odd multiple of
# the given prime.
min_multiple = ((@@primes.last // prime + 1) // 2 * 2 + 1) * prime
min_multiple.step(by: prime * 2, to: new_primes_max) do |multiple|
index = new_primes_size - (new_primes_max - multiple) // 2 - 1
new_primes[index] = 0_i64
end
end
@@primes.concat(new_primes.reject(0_i64))
end
private struct EachDivisor(T)
include Enumerable(T)
def initialize(@exponential_factors : Array(Array(T)))
end
def each
Array.each_product(@exponential_factors) do |factors|
yield factors.reduce { |a, b| a * b }
end
end
end
# Returns an enumerator that iterates through the all positive divisors of
# the given number. **The order is not guaranteed.**
# Not in the original Ruby's Prime library.
#
# ```
# AtCoder::Prime.each_divisor(20) do |n|
# puts n
# end # => Puts 1, 2, 4, 5, 10, and 20
#
# AtCoder::Prime.each_divisor(10).map { |n| 1.0 / n }.to_a # => [1.0, 0.5, 0.2, 0.1]
# ```
def each_divisor(value : Int)
raise ArgumentError.new unless value > 0
factors = prime_division(value)
if value == 1
exponential_factors = [[value]]
else
exponential_factors = factors.map do |(factor, count)|
cnt = typeof(value).zero + 1
Array(typeof(value)).new(count + 1) do |i|
cnt_copy = cnt
if i < count
cnt *= factor
end
cnt_copy
end
end
end
EachDivisor(typeof(value)).new(exponential_factors)
end
# :ditto:
def each_divisor(value : T, &block : T ->)
each_divisor(value).each(&block)
end
end
end
struct Int
def prime?
AtCoder::Prime.prime?(self)
end
end
class Array(T)
# result[i] = Sum_{n | i} a[i]
def gcd_zeta!
AtCoder::Prime.each do |p|
break if p >= size
i, k = size.pred // p, size.pred // p * p
while k > 0
self[i] += self[i * p]
i -= 1; k -= p
end
end
self
end
# :ditto:
def gcd_zeta
dup.gcd_zeta!
end
# a[i] = Sum_{n | i} result[i]
def gcd_mobius!
AtCoder::Prime.each do |p|
break if p >= size
i, k = 1, p
while k < size
self[i] -= self[k]
i += 1; k += p
end
end
self
end
# :ditto:
def gcd_mobius
dup.gcd_mobius!
end
end
module GCD
extend self
# result[n] = Sum_{gcd(i, j) = n} f[i] * g[j]
def convolution(f : Array(T), g : Array(T)) forall T
f.gcd_zeta.zip?(g.gcd_zeta).map { |x, y| (x || T.zero) * (y || T.zero) }.gcd_mobius!
end
end
h, w = read_line.split.map(&.to_i64)
hh = (0...h).map { |i| (h - i).to_m }
ww = (0...w).map { |i| (w - i).to_m }
one = h * w.pred + h.pred * w
puts GCD.convolution(hh, ww).fetch(1, Mint.zero) * 2 + one
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0