結果
| 問題 |
No.1604 Swap Sort:ONE
|
| コンテスト | |
| ユーザー |
FF256grhy
|
| 提出日時 | 2021-07-17 15:15:58 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 22 ms / 2,000 ms |
| コード長 | 6,417 bytes |
| コンパイル時間 | 2,464 ms |
| コンパイル使用メモリ | 218,848 KB |
| 最終ジャッジ日時 | 2025-01-23 02:58:20 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 24 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)
#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)
#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)
#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)
#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)
#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)
#define inc(i, n) incIX(i, 0, n)
#define dec(i, n) decIX(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };
auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };
auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };
auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };
auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };
auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(c) c.begin(), c.end()
#define RALL(c) c.rbegin(), c.rend()
#define RV(c) reverse(ALL(c))
#define SC static_cast
#define SI(c) SC<int>(c.size())
#define SL(c) SC<LL >(c.size())
#define RF(e, c) for(auto & e: c)
#define SF(c, ...) for(auto & [__VA_ARGS__]: c)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
auto * IS = & cin;
auto * OS = & cout;
array<string, 3> SEQ = { "", " ", "" };
// input
template<typename T> T in() { T a; (* IS) >> a; return a; }
// input: tuple
template<int I, typename U> void tin_(istream & is, U & t) {
if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }
}
template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }
template<typename ... T> auto tin() { return in<tuple<T ...>>(); }
// input: array
template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }
template<typename T, size_t N> auto ain() { return in<array<T, N>>(); }
// input: multi-dimensional vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input: multi-column (tuple<vector>)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
// output
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", "" , "" , a ...); };
// output: multi-dimensional vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }
template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }
// ---- ----
template<typename T> class SegmentTree {
private:
int n, s;
vector<T> a;
function<T(T &, T &)> f;
T e;
bool ok;
void shift(int & p) {
assert(inIX(p, 0, n));
p += s;
}
public:
SegmentTree() { n = 0; }
SegmentTree(int nn, function<T(T &, T &)> ff, T ee) { init(nn, ff, ee); }
void init(int nn, function<T(T &, T &)> ff, T ee) {
n = nn;
f = ff;
e = ee;
s = 1;
while(s < n) { s *= 2; }
a = vector<T>(2 * s, e);
ok = true;
}
void apply(int p, function<void(T &)> g) {
shift(p);
g(a[p]);
while(p > 1) {
p /= 2;
a[p] = f(a[2 * p], a[2 * p + 1]);
}
}
T fold_IX(int l, int r) {
assert(ok);
assert(inII(l, 0, n)); l += s;
assert(inII(r, 0, n)); r += s; r--;
T x = e, y = e;
while(l <= r) {
if(l % 2 == 1) { x = f(x, a[l]); l++; }
if(r % 2 == 0) { y = f(a[r], y); r--; }
l /= 2;
r /= 2;
}
return f(x, y);
}
T fold_II(int l, int r) { return fold_IX(l + 0, r + 1); }
T fold_XI(int l, int r) { return fold_IX(l + 1, r + 1); }
T fold_XX(int l, int r) { return fold_IX(l + 1, r + 0); }
const T & operator[](int p) {
shift(p);
return a[p];
}
T & ref(int p) {
shift(p);
ok = false;
return a[p];
}
void calc() {
dec(i, s) { a[i] = f(a[2 * i], a[2 * i + 1]); }
ok = true;
}
};
#define OP(s) [&](auto & A, auto & B) { return s; }
#define AP(s) [&](auto & A) { s; }
// ----
LL inversion_distance(vector<LL> const & a, vector<LL> const & b) {
assert(SI(a) == SI(b));
int n = SI(a);
{
auto aa = a, bb = b;
sort(ALL(aa));
sort(ALL(bb));
if(aa != bb) { return -1; }
}
map<LL, int> c;
map<pair<LL, int>, int> p;
inc(i, n) { p[{ a[i], c[a[i]] }] = i; c[a[i]]++; }
SegmentTree<LL> st(n, OP(A + B), 0);
LL ans = 0;
dec(i, n) {
c[b[i]]--;
int x = p[{ b[i], c[b[i]] }];
ans += st.fold_IX(0, x);
st.apply(x, AP(A++));
}
return ans;
}
int main() {
auto n = in<int>();
auto a = vin<LL>(n);
vector<LL> b(n);
inc(i, n) { a[i]--; b[i] = i; }
out(inversion_distance(a, b));
}
FF256grhy