結果

問題 No.1611 Minimum Multiple with Double Divisors
ユーザー optopt
提出日時 2021-07-21 22:32:43
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,587 bytes
コンパイル時間 3,847 ms
コンパイル使用メモリ 266,088 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-17 19:30:59
合計ジャッジ時間 6,083 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 AC 1 ms
6,944 KB
testcase_30 WA -
testcase_31 WA -
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,944 KB
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
#include<atcoder/all>
using namespace atcoder;
// input and output of modint
istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }
istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }
istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); }
template<int m> istream &operator>>(istream &is, static_modint<m> &a) { long long v; is >> v; a = v; return is; }
template<int m> ostream &operator<<(ostream &os, const static_modint<m> &a) { return os << a.val(); }
#define rep_(i, a_, b_, a, b, ...) for (int i = (a), lim##i = (b); i < lim##i; ++i)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) // rep(i, a): [0, a); rep(i, a, b): [a, b)
#define drep_(i, a_, b_, a, b, ...) for (int i = (a)-1, lim##i = (b); i >= lim##i; --i) 
#define drep(i, ...) drep_(i, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, 0) // drep(i, a): [0, a); drep(i, a, b): [b, a)
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#ifdef LOCAL
void debug_out() { cerr << endl; }
template <class Head, class... Tail> void debug_out(Head H, Tail... T) { cerr << ' ' << H; debug_out(T...); }
#define debug(...) cerr << 'L' << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#define dump(x) cerr << 'L' << __LINE__ << " " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
template<class T> using V = vector<T>;
template<class T> using VV = V<V<T>>;
using ll = long long;
using ld = long double;
using Vi = V<int>;  using VVi = VV<int>;
using Vl = V<ll>;   using VVl = VV<ll>;
using Vd = V<ld>;   using VVd = VV<ld>;
using Vb = V<bool>; using VVb = VV<bool>;
template<class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
template<class T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }
template<class... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }
template<class T> inline void fin(const T x) { cout << x << '\n'; exit(0); }
template<class T> inline void deduplicate(vector<T> &a) { sort(all(a)); a.erase(unique(all(a)), a.end()); }
template<class T> inline bool chmin(T &a, const T b) { if (a > b) { a = b; return true; } return false; }
template<class T> inline bool chmax(T &a, const T b) { if (a < b) { a = b; return true; } return false; }
template<class T> inline int sz(const T &x) { return x.size(); }
template<class T> inline int count_between(const vector<T> &a, T l, T r) { return lower_bound(all(a), r) - lower_bound(all(a), l); } // [l, r)
template<class T1, class T2> istream &operator>>(istream &is, pair<T1, T2> &p) { is >> p.first >> p.second; return is; }
template<class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p) { os << '(' << p.first << ", " << p.second << ')'; return os; }
template<class T, size_t n> istream &operator>>(istream &is, array<T, n> &v) { for (auto &e : v) is >> e; return is; }
template<class T, size_t n> ostream &operator<<(ostream &os, const  array<T, n> &v) { for (auto &e : v) os << e << ' '; return os; }
template<class T> istream &operator>>(istream &is, vector<T> &v) { for (auto &e : v) is >> e; return is; }
template<class T> ostream &operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }
template<class T> istream &operator>>(istream &is, deque<T> &v) { for (auto &e : v) is >> e; return is; }
template<class T> ostream &operator<<(ostream &os, const deque<T> &v) { for (auto &e : v) os << e << ' '; return os; }
inline ll floor_div(ll x, ll y) { if (y < 0) x = -x, y = -y; return x >= 0 ? x / y : (x-y+1) / y; } // floor(x/y)
inline ll ceil_div(ll x, ll y)  { if (y < 0) x = -x, y = -y; return x >= 0 ? (x+y-1) / y : x / y; } // ceil(x/y)
inline int floor_log2(const ll x) { assert(x > 0); return 63 - __builtin_clzll(x); } // floor(log2(x))
inline int ceil_log2(const ll x)  { assert(x > 0); return (x == 1) ? 0 : 64 - __builtin_clzll(x-1); } // ceil(log2(x))
inline int popcount(const ll x) { return __builtin_popcountll(x); }
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
// constexpr int INF = numeric_limits<int>::max() >> 1;
// constexpr ll INFll = numeric_limits<ll>::max() >> 1;
// constexpr ld EPS = 1e-10;
// const ld PI = acos(-1.0);
// using mint = modint998244353;
// using mint = modint1000000007;
// using mint = modint;
// using Vm = V<mint>; using VVm = VV<mint>;


// O(n)
struct sieve {
  vector<int> primes, min_factor;
  sieve(int n = 1) : min_factor(n+1) {
    for (int i = 2; i <= n; ++i) {
      if (min_factor[i] == 0) min_factor[i] = i, primes.push_back(i);
      for (int j = 0; j < int(primes.size()) && primes[j] <= min_factor[i]; ++j) {
        int k = i * primes[j];
        if (k > n) break;
        min_factor[k] = primes[j];
      }
    }
  }
  // prime factorization
  vector<pair<int, int>> factorize(int n) {
    vector<pair<int, int>> res;
    while (n > 1) {
      int p = min_factor[n], e = 0;
      while (min_factor[n] == p) ++e, n /= p;
      res.emplace_back(p, e);
    }
    return res;
  }
  // enumerate divisors
  vector<int> divisors(int n) {
    vector<int> res{1};
    for (auto [p, e] : factorize(n)) {
      int k = res.size();
      rep(i, k) {
        int d = res[i];
        rep(j, e) d *= p, res.push_back(d);
      }
    }
    return res;
  }
  // Mobius function
  int mobius(int n) {
    int x = 0;
    while (n > 1) {
      int p = min_factor[n], e = 0;
      while (min_factor[n] == p) {
        ++e;
        if (e > 1) return 0;
        n /= p;
      }
      x ^= 1;
    }
    return 1 - (x<<1);
  }
  // Euler's totient function
  int totient(int n) {
    int res = 1;
    while (n > 1) {
      int p = min_factor[n];
      res *= p-1, n /= p;
      while (min_factor[n] == p) res *= p, n /= p;
    }
    return res;
  }
};

sieve sv(100);


// void solve() {
// bool solve() {
ll solve() {
// mint solve() {
  ll x; cin >> x;
  for (auto &p : sv.primes) if (x % p != 0) return x * p;
  assert(0);
  return -1;
}


int main() {
  // solve();
  int t; cin >> t;
  rep(i, t) cout << solve() << '\n';
  // cout << (solve() ? "Yes" : "No") << '\n';
}
0