結果
問題 | No.1614 Majority Painting on Tree |
ユーザー | LayCurse |
提出日時 | 2021-07-21 22:59:15 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,018 ms / 5,000 ms |
コード長 | 19,976 bytes |
コンパイル時間 | 3,226 ms |
コンパイル使用メモリ | 233,396 KB |
実行使用メモリ | 118,128 KB |
最終ジャッジ日時 | 2024-07-17 20:11:26 |
合計ジャッジ時間 | 37,631 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,464 ms
117,120 KB |
testcase_01 | AC | 449 ms
118,128 KB |
testcase_02 | AC | 571 ms
113,024 KB |
testcase_03 | AC | 1,019 ms
112,000 KB |
testcase_04 | AC | 1,273 ms
110,976 KB |
testcase_05 | AC | 1,212 ms
110,848 KB |
testcase_06 | AC | 1,859 ms
111,704 KB |
testcase_07 | AC | 1,259 ms
111,600 KB |
testcase_08 | AC | 623 ms
111,508 KB |
testcase_09 | AC | 929 ms
111,868 KB |
testcase_10 | AC | 271 ms
111,824 KB |
testcase_11 | AC | 1,147 ms
112,504 KB |
testcase_12 | AC | 1,278 ms
111,828 KB |
testcase_13 | AC | 882 ms
111,904 KB |
testcase_14 | AC | 1,847 ms
111,936 KB |
testcase_15 | AC | 1,755 ms
112,260 KB |
testcase_16 | AC | 404 ms
112,380 KB |
testcase_17 | AC | 806 ms
112,356 KB |
testcase_18 | AC | 729 ms
111,884 KB |
testcase_19 | AC | 327 ms
111,956 KB |
testcase_20 | AC | 1,754 ms
111,992 KB |
testcase_21 | AC | 1,831 ms
111,992 KB |
testcase_22 | AC | 2,018 ms
112,080 KB |
testcase_23 | AC | 253 ms
111,992 KB |
testcase_24 | AC | 1,772 ms
111,980 KB |
testcase_25 | AC | 408 ms
111,908 KB |
testcase_26 | AC | 1,055 ms
112,048 KB |
testcase_27 | AC | 85 ms
105,888 KB |
testcase_28 | AC | 85 ms
107,032 KB |
testcase_29 | AC | 85 ms
106,676 KB |
testcase_30 | AC | 85 ms
106,344 KB |
testcase_31 | AC | 85 ms
106,096 KB |
testcase_32 | AC | 83 ms
105,948 KB |
testcase_33 | AC | 86 ms
107,332 KB |
testcase_34 | AC | 83 ms
105,872 KB |
testcase_35 | AC | 84 ms
107,112 KB |
testcase_36 | AC | 83 ms
106,396 KB |
testcase_37 | AC | 77 ms
106,244 KB |
testcase_38 | AC | 76 ms
107,268 KB |
testcase_39 | AC | 66 ms
106,992 KB |
testcase_40 | AC | 65 ms
107,356 KB |
testcase_41 | AC | 64 ms
106,588 KB |
testcase_42 | AC | 64 ms
106,148 KB |
testcase_43 | AC | 64 ms
105,900 KB |
testcase_44 | AC | 64 ms
106,396 KB |
testcase_45 | AC | 64 ms
107,848 KB |
testcase_46 | AC | 64 ms
106,352 KB |
testcase_47 | AC | 64 ms
105,852 KB |
testcase_48 | AC | 64 ms
106,704 KB |
ソースコード
#pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #pragma GCC optimize("inline") #include<bits/stdc++.h> using namespace std; #define MD (998244353U) void*wmem; char memarr[96000000]; template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){ walloc1d(arr, x2-x1, mem); (*arr) -= x1; } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator++(){ val++; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator--(){ if(val == 0){ val = MD - 1; } else{ --val; } return *this; } inline Modint operator++(int a){ Modint res(*this); val++; if(val >= MD){ val -= MD; } return res; } inline Modint operator--(int a){ Modint res(*this); if(val == 0){ val = MD - 1; } else{ --val; } return res; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class S, class T> inline S chmax(S &a, T b){ if(a<b){ a=b; } return a; } template<class T> struct Comb{ int mem_fact; T*factri; T*ifactri; int mem_dfact; T*dfactri; int mem_pw2; int mem_pw3; int mem_pw10; int mem_rep1; T*pw2c; T*pw3c; T*pw10c; T*rep1c; int mem_ipw2; int mem_ipw3; int mem_ipw10; T*ipw2c; T*ipw3c; T*ipw10c; Comb(){ mem_fact = 0; mem_dfact = 0; mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0; mem_ipw2 = mem_ipw3 = mem_ipw10 = 0; } inline void expand_fact(int k){ int i; if(k <= mem_fact){ return; } chmax(k, 2 * mem_fact); if(mem_fact == 0){ factri = (T*)malloc(k * sizeof(T)); ifactri = (T*)malloc(k * sizeof(T)); factri[0] = 1; for(i=(1);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(0);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } else{ factri = (T*)realloc(factri, k * sizeof(T)); ifactri = (T*)realloc(ifactri, k * sizeof(T)); for(i=(mem_fact);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(mem_fact);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } mem_fact = k; } inline T fac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return factri[k]; } inline T ifac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return ifactri[k]; } inline T C(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[b] * ifactri[a-b]; } inline T P(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[a-b]; } inline T H(int a, int b){ if(a==0 && b==0){ return 1; } if(a <= 0 || b < 0){ return 0; } if(mem_fact < a+b){ expand_fact(a+b); } return C(a+b-1, b); } inline T Multinomial(int sz, int a[]){ int i; int s = 0; T res; for(i=(0);i<(sz);i++){ s += a[i]; } if(mem_fact < s+1){ expand_fact(s+1); } res = factri[s]; for(i=(0);i<(sz);i++){ res *= ifactri[a[i]]; } return res; } inline T Multinomial(int a){ return 1; } inline T Multinomial(int a, int b){ if(mem_fact < a+b+1){ expand_fact(a+b+1); } return factri[a+b] * ifactri[a] * ifactri[b]; } inline T Multinomial(int a, int b, int c){ if(mem_fact < a+b+c+1){ expand_fact(a+b+c+1); } return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c]; } inline T Multinomial(int a, int b, int c, int d){ if(mem_fact < a+b+c+d+1){ expand_fact(a+b+c+d+1); } return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d]; } inline T Catalan(int n){ if(n < 0){ return 0; } if(mem_fact < 2*n+1){ expand_fact(2*n+1); } return factri[2*n] * ifactri[n] * ifactri[n+1]; } inline T Catalan(int n, int m, int k){ if(k <= 0){ return C(n+m, n); } if(n < k || m < k){ return 0; } return C(n+m, m) - C(n+m, k-1); } inline T Catalan_s(long long n, long long m, long long k){ if(k <= 0){ return C_s(n+m, n); } if(n < k || m < k){ return 0; } return C_s(n+m, m) - C_s(n+m, k-1); } inline T C_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } if(b > a - b){ b = a - b; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; res /= i + 1; } return res; } inline T P_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; } return res; } inline T H_s(long long a, long long b){ if(a==0 && b==0){ return 1; } if(a <= 0 || b < 0){ return 0; } return C_s(a+b-1, b); } inline T per_s(long long n, long long k){ T d; int m; if(n < 0 || k < 0){ return 0; } if(n == k && k == 0){ return 1; } if(n == 0 || k == 0){ return 0; } if(k==1){ return 1; } if(k==2){ d = n / 2; return d; } if(k==3){ d = (n-1) / 6; m = (n-1) % 6; if(m==0){ return 3 * d * d + d; } if(m==1){ return 3 * d * d + 2 * d; } if(m==2){ return 3 * d * d + 3 * d + 1; } if(m==3){ return 3 * d * d + 4 * d + 1; } if(m==4){ return 3 * d * d + 5 * d + 2; } if(m==5){ return 3 * d * d + 6 * d + 3; } } assert(0 && "per_s should be k <= 3"); return -1; } inline void expand_dfact(int k){ int i; if(k <= mem_dfact){ return; } chmax(k, 3); chmax(k, 2 * mem_dfact); if(mem_dfact==0){ dfactri = (T*)malloc(k * sizeof(T)); dfactri[0] = dfactri[1] = 1; for(i=(2);i<(k);i++){ dfactri[i] = i * dfactri[i-2]; } } else{ dfactri = (T*)realloc(dfactri, k * sizeof(T)); for(i=(mem_dfact);i<(k);i++){ dfactri[i] = i * dfactri[i-2]; } } mem_dfact = k; } inline void expand_pw2(int k){ int i; if(k <= mem_pw2){ return; } chmax(k, 2 * mem_pw2); if(mem_pw2==0){ pw2c = (T*)malloc(k * sizeof(T)); pw2c[0] = 1; for(i=(1);i<(k);i++){ pw2c[i] = 2 * pw2c[i-1]; } } else{ pw2c = (T*)realloc(pw2c, k * sizeof(T)); for(i=(mem_pw2);i<(k);i++){ pw2c[i] = 2 * pw2c[i-1]; } } mem_pw2 = k; } inline void expand_ipw2(int k){ int i; if(k <= mem_ipw2){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw2); if(mem_ipw2==0){ ipw2c = (T*)malloc(k * sizeof(T)); ipw2c[0] = 1; ipw2c[1] = ipw2c[0] / 2; for(i=(1);i<(k);i++){ ipw2c[i] = ipw2c[1] * ipw2c[i-1]; } } else{ ipw2c = (T*)realloc(ipw2c, k * sizeof(T)); for(i=(mem_ipw2);i<(k);i++){ ipw2c[i] = ipw2c[1] * ipw2c[i-1]; } } mem_ipw2 = k; } inline void expand_pw3(int k){ int i; if(k <= mem_pw3){ return; } chmax(k, 2 * mem_pw3); if(mem_pw3==0){ pw3c = (T*)malloc(k * sizeof(T)); pw3c[0] = 1; for(i=(1);i<(k);i++){ pw3c[i] = 3 * pw3c[i-1]; } } else{ pw3c = (T*)realloc(pw3c, k * sizeof(T)); for(i=(mem_pw3);i<(k);i++){ pw3c[i] = 3 * pw3c[i-1]; } } mem_pw3 = k; } inline void expand_ipw3(int k){ int i; if(k <= mem_ipw3){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw3); if(mem_ipw3==0){ ipw3c = (T*)malloc(k * sizeof(T)); ipw3c[0] = 1; ipw3c[1] = ipw3c[0] / 3; for(i=(1);i<(k);i++){ ipw3c[i] = ipw3c[1] * ipw3c[i-1]; } } else{ ipw3c = (T*)realloc(ipw3c, k * sizeof(T)); for(i=(mem_ipw3);i<(k);i++){ ipw3c[i] = ipw3c[1] * ipw3c[i-1]; } } mem_ipw3 = k; } inline void expand_pw10(int k){ int i; if(k <= mem_pw10){ return; } chmax(k, 2 * mem_pw10); if(mem_pw10==0){ pw10c = (T*)malloc(k * sizeof(T)); pw10c[0] = 1; for(i=(1);i<(k);i++){ pw10c[i] = 10 * pw10c[i-1]; } } else{ pw10c = (T*)realloc(pw10c, k * sizeof(T)); for(i=(mem_pw10);i<(k);i++){ pw10c[i] = 10 * pw10c[i-1]; } } mem_pw10 = k; } inline void expand_ipw10(int k){ int i; if(k <= mem_ipw10){ return; } chmax(k, 2); chmax(k, 2 * mem_ipw10); if(mem_ipw10==0){ ipw10c = (T*)malloc(k * sizeof(T)); ipw10c[0] = 1; ipw10c[1] = ipw10c[0] / 10; for(i=(1);i<(k);i++){ ipw10c[i] = ipw10c[1] * ipw10c[i-1]; } } else{ ipw10c = (T*)realloc(ipw10c, k * sizeof(T)); for(i=(mem_ipw10);i<(k);i++){ ipw10c[i] = ipw10c[1] * ipw10c[i-1]; } } mem_ipw10 = k; } inline void expand_rep1(int k){ int i; if(k <= mem_rep1){ return; } chmax(k, 2 * mem_rep1); if(mem_rep1==0){ rep1c = (T*)malloc(k * sizeof(T)); rep1c[0] = 0; for(i=(1);i<(k);i++){ rep1c[i] = 10 * rep1c[i-1] + 1; } } else{ rep1c = (T*)realloc(rep1c, k * sizeof(T)); for(i=(mem_rep1);i<(k);i++){ rep1c[i] = 10 * rep1c[i-1] + 1; } } mem_rep1 = k; } inline T dfac(int k){ if(k >= 0){ if(mem_dfact < k+1){ expand_dfact(k+1); } return dfactri[k]; } if(k==-1){ return 1; } k = - k - 2; if(k % 4 == 1){ return 1 / (-dfac(k)); } return 1 / dfac(k); } inline T pw2(int k){ if(k >= 0){ if(mem_pw2 < k+1){ expand_pw2(k+1); } return pw2c[k]; } else{ k = -k; if(mem_ipw2 < k+1){ expand_ipw2(k+1); } return ipw2c[k]; } } inline T pw3(int k){ if(k >= 0){ if(mem_pw3 < k+1){ expand_pw3(k+1); } return pw3c[k]; } else{ k = -k; if(mem_ipw3 < k+1){ expand_ipw3(k+1); } return ipw3c[k]; } } inline T pw10(int k){ if(k >= 0){ if(mem_pw10 < k+1){ expand_pw10(k+1); } return pw10c[k]; } else{ k = -k; if(mem_ipw10 < k+1){ expand_ipw10(k+1); } return ipw10c[k]; } } inline T repunit(int k){ if(mem_rep1 < k+1){ expand_rep1(k+1); } return rep1c[k]; } } ; template<> inline Modint Comb<Modint>::C_s(long long a, long long b){ long long i; Modint res; Modint d; if(b < 0 || b > a){ return 0; } if(b > a - b){ b = a - b; } res = d = 1; for(i=(0);i<(b);i++){ res *= a - i; d *= i + 1; } return res / d; } struct graph{ int N; int*es; int**edge; void setEdgeRootedTree(int N__, int M, int A[], int B[], int root=0, int reorder=0, int cnv[] = NULL, void **mem = &wmem){ int i; int j; int k; int*dist; int*q; int qs; int qe; int*ind; void*tmem; N = N__; tmem = ((char*)(*mem)) + (sizeof(int) * N + 15) + (sizeof(int*) * N + 15) + (sizeof(int) * M + 15 * N); walloc1d(&es, N, mem); walloc1d(&edge, N, mem); for(i=(0);i<(N);i++){ es[i] = 0; } for(i=(0);i<(M);i++){ es[A[i]]++; es[B[i]]++; } for(i=(0);i<(N);i++){ walloc1d(&edge[i], es[i], &tmem); } for(i=(0);i<(N);i++){ es[i] = 0; } for(i=(0);i<(M);i++){ edge[A[i]][es[A[i]]++] = B[i]; edge[B[i]][es[B[i]]++] = A[i]; } walloc1d(&dist, N, &tmem); walloc1d(&q, N, &tmem); walloc1d(&ind, N, &tmem); if(cnv==NULL){ walloc1d(&cnv, N, &tmem); } for(i=(0);i<(N);i++){ dist[i] = -1; } dist[root] = 0; qs = qe = 0; q[qe++] = root; while(qs < qe){ i = q[qs++]; for(j=(0);j<(es[i]);j++){ k = edge[i][j]; if(dist[k]==-1){ dist[k] = dist[i] + 1; q[qe++] = k; } } } if(reorder == 0){ for(i=(0);i<(N);i++){ cnv[i] = i; } for(i=(0);i<(N);i++){ ind[i] = i; } } else{ for(i=(0);i<(N);i++){ cnv[i] = q[i]; } for(i=(0);i<(N);i++){ ind[cnv[i]] = i; } } for(i=(0);i<(N);i++){ es[i] = 0; } for(i=(0);i<(M);i++){ j = A[i]; k = B[i]; if(dist[j] > dist[k]){ swap(j, k); } es[ind[j]]++; } for(i=(0);i<(N);i++){ walloc1d(&edge[i], es[i], mem); } for(i=(0);i<(N);i++){ es[i] = 0; } for(i=(0);i<(M);i++){ j = A[i]; k = B[i]; if(dist[j] > dist[k]){ swap(j, k); } j = ind[j]; k = ind[k]; edge[j][es[j]++] = k; } } } ; int N; int C; int A[100000]; int B[100000]; graph g; Modint dp[257]; Modint pw[257][100000+1]; Comb<Modint> comb; Modint solve(int n, int c){ int Lj4PdHRW, i; int e; Modint res = 1; Modint tmp = 0; Modint p; for(Lj4PdHRW=(0);Lj4PdHRW<(g.es[n]);Lj4PdHRW++){ auto&i = g.edge[n][Lj4PdHRW]; res *= solve(i, c); } e = g.es[n]; if(n!=0){ e++; } tmp = pw[c][e]; for(i=(e/2+1);i<(e);i++){ tmp -= comb.C(e,i) * Modint(c) * pw[c-1][e-i]; } if(n){ tmp /= c; } return res * tmp; } int main(){ int i; wmem = memarr; rd(N); rd(C); { int RZTsC2BF; for(RZTsC2BF=(0);RZTsC2BF<(N-1);RZTsC2BF++){ rd(A[RZTsC2BF]);A[RZTsC2BF] += (-1); rd(B[RZTsC2BF]);B[RZTsC2BF] += (-1); } } g.setEdgeRootedTree(N,N-1,A,B); for(i=(0);i<(C+1);i++){ int j; pw[i][0] = 1; for(j=(1);j<(N+1);j++){ pw[i][j] = pw[i][j-1] * i; } } for(i=(1);i<(C+1);i++){ int j; dp[i] = solve(0, i); for(j=(0);j<(i);j++){ dp[i] -= comb.C(i,j) * dp[j]; } } wt_L(dp[C]); wt_L('\n'); return 0; } // cLay version 20210717-1 [beta] // --- original code --- // #define MD 998244353 // int N, C, A[1d5], B[]; // graph g; // Modint dp[257], pw[257][1d5+1]; // Comb<Modint> comb; // // Modint solve(int n, int c){ // int e; // Modint res = 1, tmp = 0, p; // rep[g.edge[n]](i,g.es[n]) res *= solve(i, c); // // e = g.es[n]; // if(n!=0) e++; // // tmp = pw[c][e]; // rep(i,e/2+1,e) tmp -= comb.C(e,i) * Modint(c) * pw[c-1][e-i]; // // if(n) tmp /= c; // return res * tmp; // } // // { // rd(N,C,(A--,B--)(N-1)); // g.setEdgeRootedTree(N,N-1,A,B); // // rep(i,C+1){ // pw[i][0] = 1; // rep(j,1,N+1) pw[i][j] = pw[i][j-1] * i; // } // // rep(i,1,C+1){ // dp[i] = solve(0, i); // rep(j,i) dp[i] -= comb.C(i,j) * dp[j]; // } // // wt(dp[C]); // }