結果
| 問題 |
No.1621 Sequence Inversions
|
| コンテスト | |
| ユーザー |
LayCurse
|
| 提出日時 | 2021-07-22 21:45:11 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 9,283 bytes |
| コンパイル時間 | 2,564 ms |
| コンパイル使用メモリ | 223,572 KB |
| 最終ジャッジ日時 | 2025-01-23 06:27:00 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 TLE * 4 |
ソースコード
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
template<class T> struct cLtraits_identity{
using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
typename conditional<
is_integral<T>::value,
make_signed<T>,
cLtraits_identity<T>
>::type;
template <class S, class T> struct cLtraits_common_type{
using tS = typename cLtraits_try_make_signed<S>::type;
using tT = typename cLtraits_try_make_signed<T>::type;
using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){
sort(a, a+N);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T> int runLength(int N, T *arr, void *val_s = NULL, void *len_s = NULL){
int i;
int rN;
T*val = (T*) val_s;
int*len = (int*) len_s;
if(N==0){
return 0;
}
if(val==NULL || len==NULL){
void*mem = wmem;
if(val==NULL){
walloc1d(&val, N, &mem);
}
if(len==NULL){
walloc1d(&len, N, &mem);
}
}
rN = 1;
val[0] = arr[0];
len[0] = 1;
for(i=(1);i<(N);i++){
if(val[rN-1] == arr[i]){
len[rN-1]++;
}
else{
val[rN] = arr[i];
len[rN] = 1;
rN++;
}
}
return rN;
}
int N;
int K;
int A[100];
int sz;
int arr[100];
Modint dp[5000];
Modint nx[5000];
Modint dp2[101][101][5000];
int main(){
int V9aVTaxx;
wmem = memarr;
int i;
int j;
int k;
int x = 0;
int y;
rd(N);
rd(K);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
rd(A[Lj4PdHRW]);
}
}
sortA_L(N,A);
sz = runLength(N,A,NULL,arr);
for(i=(0);i<(N+1);i++){
dp2[i][0][0] = 1;
}
for(i=(0);i<(N+1);i++){
for(j=(1);j<(N+1);j++){
if(i+j <= N){
for(k=(0);k<(5000);k++){
int m;
int tU__gIr_ = min_L(k, i)+1;
for(m=(0);m<(tU__gIr_);m++){
dp2[i][j][k] += dp2[m][j-1][k-m];
}
}
}
}
}
dp[0] = 1;
for(V9aVTaxx=(0);V9aVTaxx<(sz);V9aVTaxx++){
auto&y = arr[V9aVTaxx];
for(i=(0);i<(5000);i++){
nx[i] = 0;
}
for(i=(0);i<(5000);i++){
if(dp[i]){
for(j=(0);j<(5000);j++){
if(dp2[x][y][j]){
nx[i+j] += dp[i] * dp2[x][y][j];
}
}
}
}
for(i=(0);i<(5000);i++){
dp[i] = nx[i];
}
x += y;
}
wt_L(dp[K]);
wt_L('\n');
return 0;
}
// cLay version 20210717-1 [beta]
// --- original code ---
// #define MD 998244353
// int N, K, A[100];
// int sz, arr[100];
// Modint dp[5000], nx[5000], dp2[101][101][5000];
// {
// int i, j, k, x = 0, y;
// rd(N,K,A(N));
// // N = 100; rep(i,N) A[i] = rand()%100;
// sortA(N,A);
// sz = runLength(N,A,NULL,arr);
//
// rep(i,N+1) dp2[i][0][0] = 1;
// rep(i,N+1) rep(j,1,N+1) if(i+j <= N) rep(k,5000){
// REP(m,min(k,i)+1) dp2[i][j][k] += dp2[m][j-1][k-m];
// // if(dp2[i][j][k]) wt(i,j,k,":",dp2[i][j][k]);
// }
//
// dp[0] = 1;
// rep[arr](y,sz){
// rep(i,5000) nx[i] = 0;
// rep(i,5000) if(dp[i]) rep(j,5000) if(dp2[x][y][j]) nx[i+j] += dp[i] * dp2[x][y][j];
// rep(i,5000) dp[i] = nx[i];
// // wt(x,y,":",dp(10));
// x += y;
// }
// wt(dp[K]);
// }
LayCurse