結果

問題 No.1621 Sequence Inversions
ユーザー LayCurseLayCurse
提出日時 2021-07-22 21:46:40
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,793 ms / 3,000 ms
コード長 9,277 bytes
コンパイル時間 2,921 ms
コンパイル使用メモリ 225,040 KB
実行使用メモリ 202,880 KB
最終ジャッジ日時 2024-07-17 17:12:42
合計ジャッジ時間 29,150 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 131 ms
202,752 KB
testcase_01 AC 131 ms
202,624 KB
testcase_02 AC 131 ms
202,752 KB
testcase_03 AC 131 ms
202,752 KB
testcase_04 AC 1,053 ms
202,624 KB
testcase_05 AC 132 ms
202,752 KB
testcase_06 AC 132 ms
202,752 KB
testcase_07 AC 135 ms
202,752 KB
testcase_08 AC 1,264 ms
202,880 KB
testcase_09 AC 1,586 ms
202,880 KB
testcase_10 AC 2,756 ms
202,880 KB
testcase_11 AC 1,360 ms
202,752 KB
testcase_12 AC 2,749 ms
202,624 KB
testcase_13 AC 2,793 ms
202,752 KB
testcase_14 AC 532 ms
202,752 KB
testcase_15 AC 338 ms
202,624 KB
testcase_16 AC 901 ms
202,752 KB
testcase_17 AC 1,786 ms
202,880 KB
testcase_18 AC 725 ms
202,624 KB
testcase_19 AC 130 ms
202,752 KB
testcase_20 AC 250 ms
202,752 KB
testcase_21 AC 2,064 ms
202,752 KB
testcase_22 AC 651 ms
202,752 KB
testcase_23 AC 2,428 ms
202,752 KB
testcase_24 AC 131 ms
202,752 KB
testcase_25 AC 131 ms
202,880 KB
testcase_26 AC 130 ms
202,752 KB
testcase_27 AC 130 ms
202,752 KB
testcase_28 AC 129 ms
202,752 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
template<class T> struct cLtraits_identity{
  using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
  typename conditional<
    is_integral<T>::value,
    make_signed<T>,
    cLtraits_identity<T>
    >::type;
template <class S, class T> struct cLtraits_common_type{
  using tS = typename cLtraits_try_make_signed<S>::type;
  using tT = typename cLtraits_try_make_signed<T>::type;
  using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
  static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
  (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
  (*arr)=(T*)(*mem);
  (*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
  walloc1d(arr, x2-x1, mem);
  (*arr) -= x1;
}
template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){
  sort(a, a+N);
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T> int runLength(int N, T *arr, void *val_s = NULL, void *len_s = NULL){
  int i;
  int rN;
  T*val = (T*) val_s;
  int*len = (int*) len_s;
  if(N==0){
    return 0;
  }
  if(val==NULL || len==NULL){
    void*mem = wmem;
    if(val==NULL){
      walloc1d(&val, N, &mem);
    }
    if(len==NULL){
      walloc1d(&len, N, &mem);
    }
  }
  rN = 1;
  val[0] = arr[0];
  len[0] = 1;
  for(i=(1);i<(N);i++){
    if(val[rN-1] == arr[i]){
      len[rN-1]++;
    }
    else{
      val[rN] = arr[i];
      len[rN] = 1;
      rN++;
    }
  }
  return rN;
}
int N;
int K;
int A[100];
int sz;
int arr[100];
Modint dp[5000];
Modint nx[5000];
Modint dp2[101][101][5000];
int main(){
  int V9aVTaxx;
  wmem = memarr;
  int i;
  int j;
  int k;
  int x = 0;
  int y;
  rd(N);
  rd(K);
  {
    int Lj4PdHRW;
    for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
      rd(A[Lj4PdHRW]);
    }
  }
  sortA_L(N,A);
  sz = runLength(N,A,NULL,arr);
  for(i=(0);i<(N+1);i++){
    dp2[i][0][0] = 1;
  }
  for(i=(0);i<(N+1);i++){
    for(j=(1);j<(N+1);j++){
      if(i+j <= N){
        for(k=(0);k<(K+1);k++){
          int m;
          int tU__gIr_ = min_L(k, i)+1;
          for(m=(0);m<(tU__gIr_);m++){
            dp2[i][j][k] += dp2[m][j-1][k-m];
          }
        }
      }
    }
  }
  dp[0] = 1;
  for(V9aVTaxx=(0);V9aVTaxx<(sz);V9aVTaxx++){
    auto&y = arr[V9aVTaxx];
    for(i=(0);i<(K+1);i++){
      nx[i] = 0;
    }
    for(i=(0);i<(K+1);i++){
      if(dp[i]){
        for(j=(0);j<(K+1-i);j++){
          if(dp2[x][y][j]){
            nx[i+j] += dp[i] * dp2[x][y][j];
          }
        }
      }
    }
    for(i=(0);i<(K+1);i++){
      dp[i] = nx[i];
    }
    x += y;
  }
  wt_L(dp[K]);
  wt_L('\n');
  return 0;
}
// cLay version 20210717-1 [beta]

// --- original code ---
// #define MD 998244353
// int N, K, A[100];
// int sz, arr[100];
// Modint dp[5000], nx[5000], dp2[101][101][5000];
// {
//   int i, j, k, x = 0, y;
//   rd(N,K,A(N));
//   // N = 100; rep(i,N) A[i] = rand()%100;
//   sortA(N,A);
//   sz = runLength(N,A,NULL,arr);
// 
//   rep(i,N+1) dp2[i][0][0] = 1;
//   rep(i,N+1) rep(j,1,N+1) if(i+j <= N) rep(k,K+1){
//     REP(m,min(k,i)+1) dp2[i][j][k] += dp2[m][j-1][k-m];
//     // if(dp2[i][j][k]) wt(i,j,k,":",dp2[i][j][k]);
//   }
// 
//   dp[0] = 1;
//   rep[arr](y,sz){
//     rep(i,K+1) nx[i] = 0;
//     rep(i,K+1) if(dp[i]) rep(j,K+1-i) if(dp2[x][y][j]) nx[i+j] += dp[i] * dp2[x][y][j];
//     rep(i,K+1) dp[i] = nx[i];
//     // wt(x,y,":",dp(10));
//     x += y;
//   }
//   wt(dp[K]);
// }
0