結果
| 問題 |
No.1623 三角形の制作
|
| コンテスト | |
| ユーザー |
Moss_Local
|
| 提出日時 | 2021-07-23 21:38:03 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 88 ms / 2,000 ms |
| コード長 | 12,062 bytes |
| コンパイル時間 | 15,007 ms |
| コンパイル使用メモリ | 381,360 KB |
| 実行使用メモリ | 9,528 KB |
| 最終ジャッジ日時 | 2024-07-18 17:16:07 |
| 合計ジャッジ時間 | 14,025 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 19 |
コンパイルメッセージ
warning: unnecessary parentheses around type
--> src/main.rs:117:15
|
117 | fn readi() -> (i64) {
| ^ ^
|
= note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
|
117 - fn readi() -> (i64) {
117 + fn readi() -> i64 {
|
warning: variable `X` should have a snake case name
--> src/main.rs:344:9
|
344 | let X = fast_fourier_transform(x, false);
| ^ help: convert the identifier to snake case (notice the capitalization): `x`
|
= note: `#[warn(non_snake_case)]` on by default
warning: variable `Y` should have a snake case name
--> src/main.rs:345:9
|
345 | let Y = fast_fourier_transform(y, false);
| ^ help: convert the identifier to snake case (notice the capitalization): `y`
warning: variable `Z` should have a snake case name
--> src/main.rs:346:13
|
346 | let mut Z = vec![Complex::new(0., 0.); m];
| ^ help: convert the identifier to snake case (notice the capitalization): `z`
ソースコード
// -*- coding:utf-8-unix -*-
// #![feature(map_first_last)]
#![allow(dead_code)]
#![allow(unused_imports)]
#![allow(unused_macros)]
use std::collections::*;
use std::convert::*;
use std::convert::{From, Into};
use std::fmt::Debug;
use std::fs::File;
use std::io::prelude::*;
use std::io::*;
use std::marker::Copy;
use std::mem::*;
use std::ops::Bound::*;
use std::ops::{Add, Mul, Neg, Sub};
use std::str;
use std::vec;
use std::{cmp, process::Output};
use std::{cmp::Ordering, env::consts::DLL_PREFIX};
use std::{cmp::Ordering::*, f32::consts::PI};
const INF: i64 = 1223372036854775807;
const UINF: usize = INF as usize;
const FINF: f64 = 122337203685.0;
const INF128: i128 = 1223372036854775807000000000000;
const LINF: i64 = 2147483647;
const MOD: i64 = 1000000007;
const T: bool = true;
const F: bool = false;
const MPI: f64 = 3.14159265358979323846264338327950288f64;
// const MOD: i64 = 998244353;
// const MOD: i64 = INF;
const UMOD: usize = MOD as usize;
use std::cmp::*;
use std::collections::*;
use std::io::stdin;
use std::io::stdout;
use std::io::Write;
macro_rules! p {
($x:expr) => {
println!("{}", $x);
};
}
macro_rules! d {
($x:expr) => {
println!("{:?}", $x);
};
}
macro_rules! dd {
(x:expr) => {
dbg!(x);
};
}
macro_rules! chmin {
($base:expr, $($cmps:expr),+ $(,)*) => {{
let cmp_min = min!($($cmps),+);
if $base > cmp_min {
$base = cmp_min;
true
} else {
false
}
}};
}
macro_rules! chmax {
($base:expr, $($cmps:expr),+ $(,)*) => {{
let cmp_max = max!($($cmps),+);
if $base < cmp_max {
$base = cmp_max;
true
} else {
false
}
}};
}
macro_rules! min {
($a:expr $(,)*) => {{
$a
}};
($a:expr, $b:expr $(,)*) => {{
std::cmp::min($a, $b)
}};
($a:expr, $($rest:expr),+ $(,)*) => {{
std::cmp::min($a, min!($($rest),+))
}};
}
macro_rules! max {
($a:expr $(,)*) => {{
$a
}};
($a:expr, $b:expr $(,)*) => {{
std::cmp::max($a, $b)
}};
($a:expr, $($rest:expr),+ $(,)*) => {{
std::cmp::max($a, max!($($rest),+))
}};
}
// use str::Chars;
// use str::Chars;
#[allow(dead_code)]
fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
#[allow(dead_code)]
fn readi() -> (i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
iter.next().unwrap().parse::<i64>().unwrap()
}
#[allow(dead_code)]
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
#[allow(dead_code)]
fn read_vec2<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> {
(0..n).map(|_| read_vec()).collect()
}
#[allow(dead_code)]
fn readii() -> (i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
fn readff() -> (f64, f64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<f64>().unwrap(),
iter.next().unwrap().parse::<f64>().unwrap(),
)
}
#[allow(dead_code)]
fn readiii() -> (i64, i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
#[allow(dead_code)]
fn readuu() -> (usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
fn readcc() -> (char, char) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<char>().unwrap(),
iter.next().unwrap().parse::<char>().unwrap(),
)
}
#[allow(dead_code)]
fn readuuu() -> (usize, usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
#[allow(dead_code)]
fn readuuuu() -> (usize, usize, usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
fn readiiii() -> (i64, i64, i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
mod complex {
#[derive(Clone, Copy, Debug)]
pub struct Complex {
pub x: f64,
pub y: f64,
}
impl Complex {
pub fn new(x: f64, y: f64) -> Self {
Complex { x: x, y: y }
}
pub fn polar(r: f64, theta: f64) -> Self {
Complex::new(r * theta.cos(), r * theta.sin())
}
pub fn conj(&self) -> Self {
Complex::new(self.x, -self.y)
}
pub fn abs(&self) -> f64 {
(self.x * self.x + self.y * self.y).sqrt()
}
pub fn arg(&self) -> f64 {
self.y.atan2(self.x)
}
}
use std::ops::*;
impl Add for Complex {
type Output = Self;
fn add(self, rhs: Self) -> Self {
Complex::new(self.x + rhs.x, self.y + rhs.y)
}
}
impl Sub for Complex {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Complex::new(self.x - rhs.x, self.y - rhs.y)
}
}
impl Mul for Complex {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
Complex::new(
self.x * rhs.x - self.y * rhs.y,
self.x * rhs.y + self.y * rhs.x,
)
}
}
impl Div for Complex {
type Output = Self;
fn div(self, rhs: Self) -> Self {
let z = self * rhs.conj();
let a = rhs.x * rhs.x + rhs.y * rhs.y;
Complex::new(z.x / a, z.y / a)
}
}
impl AddAssign for Complex {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs
}
}
impl SubAssign for Complex {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs
}
}
impl MulAssign for Complex {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs
}
}
impl DivAssign for Complex {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs
}
}
}
pub type Complex = complex::Complex;
pub fn multiply(a: &[i64], b: &[i64], mo: i64) -> Vec<i64> {
let n = a.len();
let m = b.len();
let mut fa = vec![];
let mut fb = vec![];
for i in 0..n {
fa.push(a[i] as f64)
}
for i in 0..m {
fb.push(b[i] as f64)
}
let fc = convolve(fa, fb);
let mut c = vec![];
for x in fc {
let v = (x + 0.5) as i64;
c.push(v % mo);
}
c
}
#[doc = "convolve two waves a[x],b[y] to c[x+y]. O(nlogn)"]
pub fn convolve(a: Vec<f64>, b: Vec<f64>) -> Vec<f64> {
let n = a.len() + b.len() - 1;
let mut m = 1;
while m < n {
m *= 2;
}
let mut x = vec![Complex::new(0., 0.); m];
for i in 0..a.len() {
x[i] = Complex::new(a[i], 0.);
}
let mut y = vec![Complex::new(0., 0.); m];
for i in 0..b.len() {
y[i] = Complex::new(b[i], 0.);
}
let X = fast_fourier_transform(x, false);
let Y = fast_fourier_transform(y, false);
let mut Z = vec![Complex::new(0., 0.); m];
for i in 0..m {
Z[i] = X[i] * Y[i];
}
let z = fast_fourier_transform(Z, true);
let mut ret = vec![0.; m];
for i in 0..m {
ret[i] = z[i].x;
}
ret
}
pub fn fast_fourier_transform(arr: Vec<Complex>, inv: bool) -> Vec<Complex> {
let n = arr.len();
assert!(n.count_ones() == 1, "the length of array is not square");
let mut a: Vec<_> = arr.to_vec();
let mut tmp: Vec<_> = (0..n).map(|_| Complex::new(0., 0.)).collect();
let mut ai: Vec<_> = (0..n).map(|i| i).collect();
let mut ti: Vec<_> = (0..n).map(|_| 0).collect();
let bit = n.trailing_zeros();
let f = if inv { -1.0 } else { 1.0 };
for si in (0..bit).rev() {
let s = 1 << si;
std::mem::swap(&mut a, &mut tmp);
std::mem::swap(&mut ai, &mut ti);
let zeta = Complex::polar(1.0, std::f64::consts::PI * 2.0 * f / (s << 1) as f64);
let mut z_i = Complex::new(1.0, 0.0);
let mut ev = 0;
let mut od = 1;
for i in 0..n {
if (i & s) != 0 {
a[i] = (tmp[i - s] - tmp[i]) * z_i;
ai[i] = ti[od];
od += 2;
z_i *= zeta;
} else {
a[i] = tmp[i] + tmp[i + s];
ai[i] = ti[ev];
ev += 2;
z_i = Complex::new(1.0, 0.0);
}
}
}
std::mem::swap(&mut a, &mut tmp);
let inv_n = if inv { n as f64 } else { 1.0 };
for i in 0..n {
a[ai[i]] = Complex::new(tmp[i].x / inv_n, tmp[i].y / inv_n);
}
a
}
/// Equivalent to std::lowerbound and std::upperbound in c++
pub trait BinarySearch<T> {
fn lower_bound(&self, x: &T) -> usize;
fn upper_bound(&self, x: &T) -> usize;
}
impl<T: Ord> BinarySearch<T> for [T] {
fn lower_bound(&self, x: &T) -> usize {
let mut low = 0;
let mut high = self.len();
while low != high {
let mid = (low + high) / 2;
match self[mid].cmp(x) {
Ordering::Less => {
low = mid + 1;
}
Ordering::Equal | Ordering::Greater => {
high = mid;
}
}
}
low
}
fn upper_bound(&self, x: &T) -> usize {
let mut low = 0;
let mut high = self.len();
while low != high {
let mid = (low + high) / 2;
match self[mid].cmp(x) {
Ordering::Less | Ordering::Equal => {
low = mid + 1;
}
Ordering::Greater => {
high = mid;
}
}
}
low
}
}
fn solve() {
let n: usize = read();
let mut a: Vec<usize> = read_vec();
let mut b: Vec<usize> = read_vec();
let mut c: Vec<usize> = read_vec();
let mut vb = vec![0; 3030];
let mut vc = vec![0; 3030];
for i in 0..n {
vb[b[i]] += 1;
vc[c[i]] += 1;
}
let mut vf = multiply(&vb, &vc, MOD);
for i in 1..vf.len() {
vf[i] += vf[i - 1];
}
a.sort();
b.sort();
c.sort();
let mut res = 0;
for i in 0..n {
let p1 = b.upper_bound(&a[i]);
let p2 = c.upper_bound(&a[i]);
res += p1 * p2;
res -= vf[a[i]] as usize;
}
p!(res);
return;
}
fn main() {
solve();
}
Moss_Local