結果

問題 No.1623 三角形の制作
ユーザー Moss_LocalMoss_Local
提出日時 2021-07-23 21:38:03
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 88 ms / 2,000 ms
コード長 12,062 bytes
コンパイル時間 15,007 ms
コンパイル使用メモリ 381,360 KB
実行使用メモリ 9,528 KB
最終ジャッジ日時 2024-07-18 17:16:07
合計ジャッジ時間 14,025 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
6,816 KB
testcase_01 AC 3 ms
6,812 KB
testcase_02 AC 49 ms
6,944 KB
testcase_03 AC 47 ms
6,940 KB
testcase_04 AC 46 ms
6,940 KB
testcase_05 AC 88 ms
8,728 KB
testcase_06 AC 14 ms
6,940 KB
testcase_07 AC 48 ms
6,940 KB
testcase_08 AC 14 ms
6,940 KB
testcase_09 AC 44 ms
6,944 KB
testcase_10 AC 72 ms
8,944 KB
testcase_11 AC 57 ms
6,940 KB
testcase_12 AC 16 ms
6,944 KB
testcase_13 AC 17 ms
6,944 KB
testcase_14 AC 17 ms
6,940 KB
testcase_15 AC 42 ms
9,528 KB
testcase_16 AC 40 ms
9,524 KB
testcase_17 AC 39 ms
9,524 KB
testcase_18 AC 43 ms
9,104 KB
testcase_19 AC 21 ms
6,944 KB
testcase_20 AC 3 ms
6,944 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unnecessary parentheses around type
   --> src/main.rs:117:15
    |
117 | fn readi() -> (i64) {
    |               ^   ^
    |
    = note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
    |
117 - fn readi() -> (i64) {
117 + fn readi() -> i64 {
    |

warning: variable `X` should have a snake case name
   --> src/main.rs:344:9
    |
344 |     let X = fast_fourier_transform(x, false);
    |         ^ help: convert the identifier to snake case (notice the capitalization): `x`
    |
    = note: `#[warn(non_snake_case)]` on by default

warning: variable `Y` should have a snake case name
   --> src/main.rs:345:9
    |
345 |     let Y = fast_fourier_transform(y, false);
    |         ^ help: convert the identifier to snake case (notice the capitalization): `y`

warning: variable `Z` should have a snake case name
   --> src/main.rs:346:13
    |
346 |     let mut Z = vec![Complex::new(0., 0.); m];
    |             ^ help: convert the identifier to snake case (notice the capitalization): `z`

ソースコード

diff #

// -*- coding:utf-8-unix -*-
// #![feature(map_first_last)]
#![allow(dead_code)]
#![allow(unused_imports)]
#![allow(unused_macros)]
use std::collections::*;
use std::convert::*;
use std::convert::{From, Into};
use std::fmt::Debug;
use std::fs::File;
use std::io::prelude::*;
use std::io::*;
use std::marker::Copy;
use std::mem::*;
use std::ops::Bound::*;
use std::ops::{Add, Mul, Neg, Sub};
use std::str;
use std::vec;
use std::{cmp, process::Output};
use std::{cmp::Ordering, env::consts::DLL_PREFIX};
use std::{cmp::Ordering::*, f32::consts::PI};
const INF: i64 = 1223372036854775807;
const UINF: usize = INF as usize;
const FINF: f64 = 122337203685.0;
const INF128: i128 = 1223372036854775807000000000000;
const LINF: i64 = 2147483647;
const MOD: i64 = 1000000007;
const T: bool = true;
const F: bool = false;

const MPI: f64 = 3.14159265358979323846264338327950288f64;
// const MOD: i64 = 998244353;
// const MOD: i64 = INF;

const UMOD: usize = MOD as usize;
use std::cmp::*;
use std::collections::*;
use std::io::stdin;
use std::io::stdout;
use std::io::Write;

macro_rules! p {
    ($x:expr) => {
        println!("{}", $x);
    };
}
macro_rules! d {
    ($x:expr) => {
        println!("{:?}", $x);
    };
}
macro_rules! dd {
    (x:expr) => {
        dbg!(x);
    };
}

macro_rules! chmin {
    ($base:expr, $($cmps:expr),+ $(,)*) => {{
        let cmp_min = min!($($cmps),+);
        if $base > cmp_min {
            $base = cmp_min;
            true
        } else {
            false
        }
    }};
}

macro_rules! chmax {
    ($base:expr, $($cmps:expr),+ $(,)*) => {{
        let cmp_max = max!($($cmps),+);
        if $base < cmp_max {
            $base = cmp_max;
            true
        } else {
            false
        }
    }};
}

macro_rules! min {
    ($a:expr $(,)*) => {{
        $a
    }};
    ($a:expr, $b:expr $(,)*) => {{
        std::cmp::min($a, $b)
    }};
    ($a:expr, $($rest:expr),+ $(,)*) => {{
        std::cmp::min($a, min!($($rest),+))
    }};
}

macro_rules! max {
    ($a:expr $(,)*) => {{
        $a
    }};
    ($a:expr, $b:expr $(,)*) => {{
        std::cmp::max($a, $b)
    }};
    ($a:expr, $($rest:expr),+ $(,)*) => {{
        std::cmp::max($a, max!($($rest),+))
    }};
}

// use str::Chars;

// use str::Chars;
#[allow(dead_code)]
fn read<T: std::str::FromStr>() -> T {
    let mut s = String::new();
    std::io::stdin().read_line(&mut s).ok();
    s.trim().parse().ok().unwrap()
}

#[allow(dead_code)]
fn readi() -> (i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    iter.next().unwrap().parse::<i64>().unwrap()
}

#[allow(dead_code)]
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
    read::<String>()
        .split_whitespace()
        .map(|e| e.parse().ok().unwrap())
        .collect()
}
#[allow(dead_code)]
fn read_vec2<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> {
    (0..n).map(|_| read_vec()).collect()
}

#[allow(dead_code)]
fn readii() -> (i64, i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
    )
}

fn readff() -> (f64, f64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<f64>().unwrap(),
        iter.next().unwrap().parse::<f64>().unwrap(),
    )
}

#[allow(dead_code)]
fn readiii() -> (i64, i64, i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
    )
}
#[allow(dead_code)]
fn readuu() -> (usize, usize) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
    )
}

fn readcc() -> (char, char) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<char>().unwrap(),
        iter.next().unwrap().parse::<char>().unwrap(),
    )
}

#[allow(dead_code)]
fn readuuu() -> (usize, usize, usize) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
    )
}

#[allow(dead_code)]
fn readuuuu() -> (usize, usize, usize, usize) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
        iter.next().unwrap().parse::<usize>().unwrap(),
    )
}

fn readiiii() -> (i64, i64, i64, i64) {
    let mut str = String::new();
    let _ = stdin().read_line(&mut str).unwrap();
    let mut iter = str.split_whitespace();
    (
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
        iter.next().unwrap().parse::<i64>().unwrap(),
    )
}

mod complex {
    #[derive(Clone, Copy, Debug)]
    pub struct Complex {
        pub x: f64,
        pub y: f64,
    }

    impl Complex {
        pub fn new(x: f64, y: f64) -> Self {
            Complex { x: x, y: y }
        }
        pub fn polar(r: f64, theta: f64) -> Self {
            Complex::new(r * theta.cos(), r * theta.sin())
        }
        pub fn conj(&self) -> Self {
            Complex::new(self.x, -self.y)
        }
        pub fn abs(&self) -> f64 {
            (self.x * self.x + self.y * self.y).sqrt()
        }
        pub fn arg(&self) -> f64 {
            self.y.atan2(self.x)
        }
    }

    use std::ops::*;

    impl Add for Complex {
        type Output = Self;
        fn add(self, rhs: Self) -> Self {
            Complex::new(self.x + rhs.x, self.y + rhs.y)
        }
    }

    impl Sub for Complex {
        type Output = Self;
        fn sub(self, rhs: Self) -> Self {
            Complex::new(self.x - rhs.x, self.y - rhs.y)
        }
    }

    impl Mul for Complex {
        type Output = Self;
        fn mul(self, rhs: Self) -> Self {
            Complex::new(
                self.x * rhs.x - self.y * rhs.y,
                self.x * rhs.y + self.y * rhs.x,
            )
        }
    }

    impl Div for Complex {
        type Output = Self;
        fn div(self, rhs: Self) -> Self {
            let z = self * rhs.conj();
            let a = rhs.x * rhs.x + rhs.y * rhs.y;
            Complex::new(z.x / a, z.y / a)
        }
    }

    impl AddAssign for Complex {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs
        }
    }
    impl SubAssign for Complex {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs
        }
    }
    impl MulAssign for Complex {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs
        }
    }
    impl DivAssign for Complex {
        fn div_assign(&mut self, rhs: Self) {
            *self = *self / rhs
        }
    }
}
pub type Complex = complex::Complex;

pub fn multiply(a: &[i64], b: &[i64], mo: i64) -> Vec<i64> {
    let n = a.len();
    let m = b.len();
    let mut fa = vec![];
    let mut fb = vec![];
    for i in 0..n {
        fa.push(a[i] as f64)
    }
    for i in 0..m {
        fb.push(b[i] as f64)
    }
    let fc = convolve(fa, fb);
    let mut c = vec![];
    for x in fc {
        let v = (x + 0.5) as i64;
        c.push(v % mo);
    }
    c
}

#[doc = "convolve two waves a[x],b[y] to c[x+y]. O(nlogn)"]
pub fn convolve(a: Vec<f64>, b: Vec<f64>) -> Vec<f64> {
    let n = a.len() + b.len() - 1;
    let mut m = 1;
    while m < n {
        m *= 2;
    }
    let mut x = vec![Complex::new(0., 0.); m];
    for i in 0..a.len() {
        x[i] = Complex::new(a[i], 0.);
    }
    let mut y = vec![Complex::new(0., 0.); m];
    for i in 0..b.len() {
        y[i] = Complex::new(b[i], 0.);
    }
    let X = fast_fourier_transform(x, false);
    let Y = fast_fourier_transform(y, false);
    let mut Z = vec![Complex::new(0., 0.); m];
    for i in 0..m {
        Z[i] = X[i] * Y[i];
    }
    let z = fast_fourier_transform(Z, true);
    let mut ret = vec![0.; m];
    for i in 0..m {
        ret[i] = z[i].x;
    }
    ret
}

pub fn fast_fourier_transform(arr: Vec<Complex>, inv: bool) -> Vec<Complex> {
    let n = arr.len();
    assert!(n.count_ones() == 1, "the length of array is not square");
    let mut a: Vec<_> = arr.to_vec();
    let mut tmp: Vec<_> = (0..n).map(|_| Complex::new(0., 0.)).collect();
    let mut ai: Vec<_> = (0..n).map(|i| i).collect();
    let mut ti: Vec<_> = (0..n).map(|_| 0).collect();
    let bit = n.trailing_zeros();
    let f = if inv { -1.0 } else { 1.0 };
    for si in (0..bit).rev() {
        let s = 1 << si;
        std::mem::swap(&mut a, &mut tmp);
        std::mem::swap(&mut ai, &mut ti);
        let zeta = Complex::polar(1.0, std::f64::consts::PI * 2.0 * f / (s << 1) as f64);
        let mut z_i = Complex::new(1.0, 0.0);
        let mut ev = 0;
        let mut od = 1;
        for i in 0..n {
            if (i & s) != 0 {
                a[i] = (tmp[i - s] - tmp[i]) * z_i;
                ai[i] = ti[od];
                od += 2;
                z_i *= zeta;
            } else {
                a[i] = tmp[i] + tmp[i + s];
                ai[i] = ti[ev];
                ev += 2;
                z_i = Complex::new(1.0, 0.0);
            }
        }
    }

    std::mem::swap(&mut a, &mut tmp);
    let inv_n = if inv { n as f64 } else { 1.0 };
    for i in 0..n {
        a[ai[i]] = Complex::new(tmp[i].x / inv_n, tmp[i].y / inv_n);
    }
    a
}

/// Equivalent to std::lowerbound and std::upperbound in c++
pub trait BinarySearch<T> {
    fn lower_bound(&self, x: &T) -> usize;
    fn upper_bound(&self, x: &T) -> usize;
}
impl<T: Ord> BinarySearch<T> for [T] {
    fn lower_bound(&self, x: &T) -> usize {
        let mut low = 0;
        let mut high = self.len();
        while low != high {
            let mid = (low + high) / 2;
            match self[mid].cmp(x) {
                Ordering::Less => {
                    low = mid + 1;
                }
                Ordering::Equal | Ordering::Greater => {
                    high = mid;
                }
            }
        }
        low
    }
    fn upper_bound(&self, x: &T) -> usize {
        let mut low = 0;
        let mut high = self.len();
        while low != high {
            let mid = (low + high) / 2;
            match self[mid].cmp(x) {
                Ordering::Less | Ordering::Equal => {
                    low = mid + 1;
                }
                Ordering::Greater => {
                    high = mid;
                }
            }
        }
        low
    }
}
fn solve() {
    let n: usize = read();
    let mut a: Vec<usize> = read_vec();
    let mut b: Vec<usize> = read_vec();
    let mut c: Vec<usize> = read_vec();
    let mut vb = vec![0; 3030];
    let mut vc = vec![0; 3030];
    for i in 0..n {
        vb[b[i]] += 1;
        vc[c[i]] += 1;
    }
    let mut vf = multiply(&vb, &vc, MOD);
    for i in 1..vf.len() {
        vf[i] += vf[i - 1];
    }
    a.sort();
    b.sort();
    c.sort();
    let mut res = 0;
    for i in 0..n {
        let p1 = b.upper_bound(&a[i]);
        let p2 = c.upper_bound(&a[i]);
        res += p1 * p2;
        res -= vf[a[i]] as usize;
    }
    p!(res);

    return;
}
fn main() {
    solve();
}
0