結果
| 問題 |
No.1626 三角形の構築
|
| コンテスト | |
| ユーザー |
maine_honzuki
|
| 提出日時 | 2021-07-23 22:07:12 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 6,140 bytes |
| コンパイル時間 | 2,417 ms |
| コンパイル使用メモリ | 224,512 KB |
| 最終ジャッジ日時 | 2025-01-23 08:02:26 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 23 TLE * 3 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
namespace FastPrimeFactorization {
template <typename word, typename dword, typename sword>
struct UnsafeMod {
UnsafeMod() : x(0) {}
UnsafeMod(word _x) : x(init(_x)) {}
bool operator==(const UnsafeMod& rhs) const { return x == rhs.x; }
bool operator!=(const UnsafeMod& rhs) const { return x != rhs.x; }
UnsafeMod& operator+=(const UnsafeMod& rhs) {
if ((x += rhs.x) >= mod)
x -= mod;
return *this;
}
UnsafeMod& operator-=(const UnsafeMod& rhs) {
if (sword(x -= rhs.x) < 0)
x += mod;
return *this;
}
UnsafeMod& operator*=(const UnsafeMod& rhs) {
x = reduce(dword(x) * rhs.x);
return *this;
}
UnsafeMod operator+(const UnsafeMod& rhs) const { return UnsafeMod(*this) += rhs; }
UnsafeMod operator-(const UnsafeMod& rhs) const { return UnsafeMod(*this) -= rhs; }
UnsafeMod operator*(const UnsafeMod& rhs) const { return UnsafeMod(*this) *= rhs; }
UnsafeMod pow(uint64_t e) const {
UnsafeMod ret(1);
for (UnsafeMod base = *this; e; e >>= 1, base *= base) {
if (e & 1)
ret *= base;
}
return ret;
}
word get() const { return reduce(x); }
static constexpr int word_bits = sizeof(word) * 8;
static word modulus() { return mod; }
static word init(word w) { return reduce(dword(w) * r2); }
static void set_mod(word m) {
mod = m;
inv = mul_inv(mod);
r2 = -dword(mod) % mod;
}
static word reduce(dword x) {
word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
return sword(y) < 0 ? y + mod : y;
}
static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); }
static word mod, inv, r2;
word x;
};
using uint128_t = __uint128_t;
using Mod64 = UnsafeMod<uint64_t, uint128_t, int64_t>;
template <>
uint64_t Mod64::mod = 0;
template <>
uint64_t Mod64::inv = 0;
template <>
uint64_t Mod64::r2 = 0;
using Mod32 = UnsafeMod<uint32_t, uint64_t, int32_t>;
template <>
uint32_t Mod32::mod = 0;
template <>
uint32_t Mod32::inv = 0;
template <>
uint32_t Mod32::r2 = 0;
bool miller_rabin_primality_test_uint64(uint64_t n) {
Mod64::set_mod(n);
uint64_t d = n - 1;
while (d % 2 == 0)
d /= 2;
Mod64 e{1}, rev{n - 1};
// http://miller-rabin.appspot.com/ < 2^64
for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (n <= a)
break;
uint64_t t = d;
Mod64 y = Mod64(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n) {
Mod32::set_mod(n);
uint32_t d = n - 1;
while (d % 2 == 0)
d /= 2;
Mod32 e{1}, rev{n - 1};
for (uint32_t a : {2, 7, 61}) {
if (n <= a)
break;
uint32_t t = d;
Mod32 y = Mod32(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool is_prime(uint64_t n) {
if (n == 2)
return true;
if (n == 1 || n % 2 == 0)
return false;
if (n < uint64_t(1) << 31)
return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
uint64_t pollard_rho(uint64_t n) {
if (is_prime(n))
return n;
if (n % 2 == 0)
return 2;
Mod64::set_mod(n);
uint64_t d;
Mod64 one{1};
for (Mod64 c{one};; c += one) {
Mod64 x{2}, y{2};
do {
x = x * x + c;
y = y * y + c;
y = y * y + c;
d = __gcd((x - y).get(), n);
} while (d == 1);
if (d < n)
return d;
}
assert(0);
}
vector<uint64_t> prime_factor(uint64_t n) {
if (n <= 1)
return {};
uint64_t p = pollard_rho(n);
if (p == n)
return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
}; // namespace FastPrimeFactorization
vector<pair<ll, ll>> prime_factorize(ll n) {
auto V = FastPrimeFactorization::prime_factor(n);
map<ll, ll> mp;
for (auto&& e : V) {
mp[e]++;
}
vector<pair<ll, ll>> ret;
for (auto p : mp) {
ret.emplace_back(p);
}
return ret;
}
ll S, T;
vector<pair<ll, ll>> V;
vector<vector<ll>> Pow;
set<vector<ll>> ans;
void maine(vector<ll> Len, int idx) {
if (idx == V.size()) {
for (auto&& l : Len) {
l = T - l;
if (l % 2 == 1 || l <= 0)
return;
l /= 2;
}
sort(begin(Len), end(Len));
if (Len[0] + Len[1] > Len[2] && Len[1] + Len[2] > Len[0] && Len[2] + Len[0] > Len[1] && Len[0] + Len[1] + Len[2] == T)
ans.insert(Len);
} else {
auto [n, m] = V[idx];
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= m - i; j++) {
int k = m - i - j;
auto nxt = Len;
nxt[0] *= Pow[idx][i];
nxt[1] *= Pow[idx][j];
nxt[2] *= Pow[idx][k];
maine(nxt, idx + 1);
}
}
}
}
void solve() {
ans.clear();
Pow.clear();
cin >> S >> T;
if ((16 * S * S) % T) {
cout << 0 << endl;
return;
}
V = prime_factorize(16 * S * S / T);
for (auto&& [n, m] : V) {
vector<ll> book(1, 1);
for (int i = 0; i < m; i++) {
book.emplace_back(n * book.back());
}
Pow.emplace_back(book);
}
maine({1, 1, 1}, 0);
cout << ans.size() << endl;
for (auto&& e : ans) {
for (int i = 0; i < 3; i++) {
cout << e[i] << " \n"[i == 2];
}
}
}
int main() {
int t;
cin >> t;
while (t--) {
solve();
}
}
maine_honzuki