結果
| 問題 |
No.1627 三角形の成立
|
| コンテスト | |
| ユーザー |
noshi91
|
| 提出日時 | 2021-07-23 22:44:20 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,300 bytes |
| コンパイル時間 | 865 ms |
| コンパイル使用メモリ | 84,276 KB |
| 最終ジャッジ日時 | 2025-01-23 08:29:05 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 6 WA * 16 |
ソースコード
#include <cassert>
#include <cstddef>
#include <numeric>
#include <utility>
#include <vector>
namespace n91 {
class prime_sieve {
public:
using size_type = std::size_t;
private:
std::vector<size_type> prime, factor;
public:
prime_sieve() {}
explicit prime_sieve(const size_type size) : prime(), factor(size) {
if (size == 0) {
return;
}
std::iota(factor.begin(), factor.end(), static_cast<size_type>(0));
factor[0] = 1;
if (size == 1) {
return;
}
factor[1] = 0;
prime.reserve(size);
for (size_type i{2}; i != size; ++i) {
const size_type fi{factor[i]};
if (fi == i) {
prime.push_back(i);
}
for (const size_type p : prime) {
if (p > fi) {
break;
}
const size_type ip{i * p};
if (ip >= size) {
break;
}
factor[ip] = p;
}
}
prime.shrink_to_fit();
}
size_type len() const noexcept { return factor.size(); }
bool is_prime(const size_type i) const noexcept {
assert(i < len());
return factor[i] == i;
}
std::vector<size_type> factorize(size_type i) const noexcept {
assert(i != 0);
std::vector<size_type> ret;
while (i != 1) {
ret.push_back(factor[i]);
i /= factor[i];
}
return std::move(ret);
}
template <class C> void divisor_zeta(C &c) const noexcept {
const size_type n{c.size()};
assert(n <= len());
for (size_type i{0}; i != prime.size() && prime[i] < n; ++i) {
for (size_type j{1}; j * prime[i] < n; ++j) {
c[j * prime[i]] += c[j];
}
}
}
template <class C> void divisor_mobius(C &c) const noexcept {
const size_type n{c.size()};
assert(n <= len());
for (size_type i{0}; i != prime.size() && prime[i] < n; ++i) {
for (size_type j{(n - 1) / prime[i]}; j != 0; --j) {
c[j * prime[i]] -= c[j];
}
}
}
template <class C> void multiple_zeta(C &c) const noexcept {
const size_type n{c.size()};
assert(n <= len());
for (size_type i{0}; i != prime.size() && prime[i] < n; ++i) {
for (size_type j{(n - 1) / prime[i]}; j != 0; --j) {
c[j] += c[j * prime[i]];
}
}
}
template <class C> void multiple_mobius(C &c) const noexcept {
const size_type n{c.size()};
assert(n <= len());
for (size_type i{0}; i != prime.size() && prime[i] < n; ++i) {
for (size_type j{1}; j * prime[i] < n; ++j) {
c[j] -= c[j * prime[i]];
}
}
}
};
} // namespace n91
#include <algorithm>
#include <iostream>
#include <vector>
#include <atcoder/modint>
int main() {
using mint = atcoder::modint1000000007;
int n, m;
std::cin >> n >> m;
int A = std::max(n, m);
std::vector<mint> a(A, 0);
const mint inv2 = mint(1) / 2;
for (int d = 1; d != A; d += 1) {
mint h = 0, v = 0;
{
mint x = (n - 1) / d;
h = x * n - d * x * (x + 1) * inv2;
}
{
mint x = (m - 1) / d;
v = x * n - d * x * (x + 1) * inv2;
}
a[d] = 2 * h * v + n * v + m * h;
}
n91::prime_sieve(A).multiple_mobius(a);
mint ans = [&]() {
mint x = mint(n) * m;
return x * (x - 1) * (x - 2) / 6;
}();
for (int d = 1; d != A; d += 1) {
ans -= a[d] * (d - 1);
}
std::cout << ans.val() << "\n";
return 0;
}
noshi91