結果
| 問題 |
No.1627 三角形の成立
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2021-07-23 23:19:31 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 582 ms / 1,000 ms |
| コード長 | 63,926 bytes |
| コンパイル時間 | 16,707 ms |
| コンパイル使用メモリ | 384,020 KB |
| 最終ジャッジ日時 | 2025-01-23 08:55:06 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 22 |
ソースコード
#line 1 "other-workspace\\y.cc"
#if defined(ONLINE_JUDGE) // && 0
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,mmx,avx,avx2")
#endif
// #undef _GLIBCXX_DEBUG
#include <bits/extc++.h>
/**
#include "lib/all"
/*/
#line 2 "Library\\lib\\alias"
/**
* @file alias
* @brief Alias
*/
#line 10 "Library\\lib\\alias"
// #include "bit"
#line 2 "Library\\lib\\limits"
#line 4 "Library\\lib\\limits"
namespace workspace {
template <class _Tp> struct numeric_limits : std::numeric_limits<_Tp> {};
#ifdef __SIZEOF_INT128__
template <> struct numeric_limits<__uint128_t> {
constexpr static __uint128_t max() { return ~__uint128_t(0); }
constexpr static __uint128_t min() { return 0; }
};
template <> struct numeric_limits<__int128_t> {
constexpr static __int128_t max() {
return numeric_limits<__uint128_t>::max() >> 1;
}
constexpr static __int128_t min() { return -max() - 1; }
};
#endif
} // namespace workspace
#line 13 "Library\\lib\\alias"
namespace workspace {
constexpr static char eol = '\n';
using namespace std;
using i32 = int_least32_t;
using u32 = uint_least32_t;
using i64 = int_least64_t;
using u64 = uint_least64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
#else
#warning 128-bit integer is not available.
#endif
template <class _T1, class _T2,
typename = decltype(std::declval<const _T2 &>() <
std::declval<const _T1 &>())>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
min(const _T1 &__x, const _T2 &__y) noexcept {
return __y < __x ? __y : __x;
}
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _T2 &>(), std::declval<const _T1 &>()))>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
min(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept {
return __comp(__y, __x) ? __y : __x;
}
template <class _Tp, typename = decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>
constexpr _Tp min(std::initializer_list<_Tp> __x) noexcept {
return *std::min_element(__x.begin(), __x.end());
}
template <class _Tp, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _Tp &>(), std::declval<const _Tp &>()))>
constexpr _Tp min(std::initializer_list<_Tp> __x, _Compare __comp) noexcept {
return *std::min_element(__x.begin(), __x.end(), __comp);
}
template <class _T1, class _T2,
typename = decltype(std::declval<const _T1 &>() <
std::declval<const _T2 &>())>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
max(const _T1 &__x, const _T2 &__y) noexcept {
return __x < __y ? __y : __x;
}
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _T1 &>(), std::declval<const _T2 &>()))>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
max(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept {
return __comp(__x, __y) ? __y : __x;
}
template <class _Tp, typename = decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>
constexpr _Tp max(std::initializer_list<_Tp> __x) noexcept {
return *std::max_element(__x.begin(), __x.end());
}
template <class _Tp, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _Tp &>(), std::declval<const _Tp &>()))>
constexpr _Tp max(std::initializer_list<_Tp> __x, _Compare __comp) noexcept {
return *std::max_element(__x.begin(), __x.end(), __comp);
}
#ifdef _GLIBCXX_BIT
template <typename _Tp> constexpr _Tp __bsf(_Tp __x) noexcept {
return std::__countr_zero(__x);
}
template <typename _Tp> constexpr _Tp __bsr(_Tp __x) noexcept {
return std::__bit_width(__x) - 1;
}
#endif
} // namespace workspace
#line 13 "other-workspace\\y.cc"
// #include "lib/cxx20"
#line 2 "Library\\src\\sys\\call_once.hpp"
/**
* @file call_once.hpp
* @brief Call Once
*/
#line 9 "Library\\src\\sys\\call_once.hpp"
namespace workspace {
/**
* @brief Call once.
*/
template <class _F> void call_once(_F &&__f) {
static std::unordered_set<void *> __called;
if (__called.count(std::addressof(__f))) return;
__called.emplace(std::addressof(__f));
__f();
}
} // namespace workspace
#line 2 "Library\\src\\sys\\clock.hpp"
/**
* @file clock.hpp
* @brief Clock
*/
#line 9 "Library\\src\\sys\\clock.hpp"
namespace workspace {
using namespace std::chrono;
namespace internal {
// The start time of the program.
const auto start_time{system_clock::now()};
} // namespace internal
/**
* @return Elapsed time of the program.
*/
decltype(auto) elapsed() noexcept {
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - internal::start_time).count();
}
} // namespace workspace
#line 2 "Library\\src\\sys\\ejection.hpp"
/**
* @file ejection.hpp
* @brief Ejection
*/
#line 9 "Library\\src\\sys\\ejection.hpp"
namespace workspace {
namespace internal {
struct ejection {
bool exit = 0;
};
} // namespace internal
/**
* @brief eject from a try block, throw nullptr
* @param arg output
*/
template <class Tp> void eject(Tp const &arg) {
std::cout << arg << "\n";
throw internal::ejection{};
}
void exit() { throw internal::ejection{true}; }
} // namespace workspace
#line 2 "Library\\src\\sys\\iteration.hpp"
/**
* @file iteration.hpp
* @brief Case Iteration
*/
#line 9 "Library\\src\\sys\\iteration.hpp"
#line 11 "Library\\src\\sys\\iteration.hpp"
namespace workspace {
void main();
struct {
// 1-indexed
unsigned current{0};
unsigned total{1};
void read() { (std::cin >> total).ignore(); }
int iterate() {
static bool once = false;
assert(!once);
once = true;
while (current++ < total) {
try {
main();
} catch (internal::ejection const& status) {
if (status.exit) break;
}
}
return 0;
}
} case_info;
} // namespace workspace
#line 2 "Library\\src\\utils\\cached.hpp"
/**
* @file cached.hpp
* @brief Cached
*/
#line 2 "Library\\src\\utils\\fixed_point.hpp"
/**
* @file fixed_point.hpp
* @brief Fixed Point Combinator
*/
#line 9 "Library\\src\\utils\\fixed_point.hpp"
namespace workspace {
/**
* @brief Fixed Point Combinator.
*/
template <class _F> class fixed_point {
struct _wrapper {
_F &__ref;
template <class... _Args>
decltype(auto) operator()(_Args &&...__args) noexcept(
noexcept(__ref(*this, std::forward<_Args>(__args)...))) {
return __ref(*this, std::forward<_Args>(__args)...);
}
};
_F __fn;
public:
// Construct a new fixed-point object.
fixed_point(_F __x) noexcept : __fn(__x) {}
// Function call.
template <class... _Args>
decltype(auto) operator()(_Args &&...__args) noexcept(noexcept(_wrapper{
__fn}(std::forward<_Args>(__args)...))) {
return _wrapper{__fn}(std::forward<_Args>(__args)...);
}
};
} // namespace workspace
#line 2 "Library\\lib\\cxx17"
#ifndef _CXX17_CONSTEXPR
#if __cplusplus >= 201703L
#define _CXX17_CONSTEXPR constexpr
#else
#define _CXX17_CONSTEXPR
#endif
#endif
#ifndef _CXX17_STATIC_ASSERT
#if __cplusplus >= 201703L
#define _CXX17_STATIC_ASSERT static_assert
#else
#define _CXX17_STATIC_ASSERT assert
#endif
#endif
#if __cplusplus < 201703L
namespace std {
/**
* @brief Return the size of a container.
* @param __cont Container.
*/
template <typename _Container>
constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size()))
-> decltype(__cont.size()) {
return __cont.size();
}
/**
* @brief Return the size of an array.
*/
template <typename _Tp, size_t _Nm>
constexpr size_t size(const _Tp (&)[_Nm]) noexcept {
return _Nm;
}
} // namespace std
#endif
#line 10 "Library\\src\\utils\\cached.hpp"
namespace workspace {
namespace _cached_impl {
// Convert keys to tuple.
template <class... _Args> struct as_tuple {
using type = decltype(std::tuple_cat(
std::declval<std::tuple<std::conditional_t<
std::is_convertible<std::decay_t<_Args>, _Args>::value,
std::decay_t<_Args>, _Args>>>()...));
};
// Associative array.
template <class _Value, class... _Keys>
struct assoc
: std::integral_constant<int, !std::is_void<_Value>::value>,
std::conditional_t<std::is_void<_Value>::value,
std::set<typename as_tuple<_Keys...>::type>,
std::map<typename as_tuple<_Keys...>::type, _Value>> {
};
// Non-resursive lambda type.
template <class _F, class = void> struct is_recursive : std::false_type {};
// Resursive lambda type.
template <class _F>
struct is_recursive<
_F, std::__void_t<decltype(&_F::template operator()<fixed_point<_F> &>)>>
: std::true_type {};
// Recursive ver.
template <class _F> class _recursive {
template <class...> struct _cache;
template <class _G, class _R, class _H, class... _Args>
struct _cache<_R (_G::*)(_H, _Args...)> : assoc<_R, _Args...> {};
template <class _G, class _R, class _H, class... _Args>
struct _cache<_R (_G::*)(_H, _Args...) const> : assoc<_R, _Args...> {};
template <class _G, class _R, class _H, class... _Args>
struct _cache<_R (_G::*)(_H, _Args...) noexcept> : assoc<_R, _Args...> {};
template <class _G, class _R, class _H, class... _Args>
struct _cache<_R (_G::*)(_H, _Args...) const noexcept> : assoc<_R, _Args...> {
};
public:
using cache_type =
_cache<decltype(&_F::template operator()<_recursive<_F> &>)>;
private:
_F __fn;
cache_type __c;
struct _wrapper {
_F &__fn;
cache_type &__c;
template <class... _Args>
decltype(auto) operator()(_Args &&...__args) noexcept(
noexcept(__fn(*this, std::forward<_Args>(__args)...))) {
typename cache_type::key_type __key{__args...};
auto __i = __c.lower_bound(__key);
if _CXX17_CONSTEXPR (cache_type::value) {
if (__i != __c.end() && __i->first == __key) return __i->second;
return __c
.emplace_hint(__i, std::move(__key),
__fn(*this, std::forward<_Args>(__args)...))
->second;
}
else if (__i == __c.end() || *__i != __key)
__c.emplace_hint(__i, std::move(__key)),
__fn(*this, std::forward<_Args>(__args)...);
}
};
public:
_recursive(_F &&__x) noexcept : __fn(__x) {}
// Function call.
template <class... _Args>
decltype(auto) operator()(_Args &&...__args) noexcept(noexcept(_wrapper{
__fn, __c}(std::forward<_Args>(__args)...))) {
return _wrapper{__fn, __c}(std::forward<_Args>(__args)...);
}
};
// Non-recursive ver.
template <class _F> class _non_recursive {
template <class _T, class = void> struct _get_func { using type = _T; };
template <class _T>
struct _get_func<_T, std::__void_t<decltype(&_T::operator())>> {
using type = decltype(&_T::operator());
};
template <class...> struct _cache;
template <class _R, class... _Args>
struct _cache<_R(_Args...)> : assoc<_R, _Args...> {};
template <class _R, class... _Args>
struct _cache<_R (*)(_Args...)> : assoc<_R, _Args...> {};
template <class _G, class _R, class... _Args>
struct _cache<_R (_G::*)(_Args...)> : assoc<_R, _Args...> {};
template <class _G, class _R, class... _Args>
struct _cache<_R (_G::*)(_Args...) const> : assoc<_R, _Args...> {};
template <class _R, class... _Args>
struct _cache<_R(_Args...) noexcept> : assoc<_R, _Args...> {};
template <class _R, class... _Args>
struct _cache<_R (*)(_Args...) noexcept> : assoc<_R, _Args...> {};
template <class _G, class _R, class... _Args>
struct _cache<_R (_G::*)(_Args...) noexcept> : assoc<_R, _Args...> {};
template <class _G, class _R, class... _Args>
struct _cache<_R (_G::*)(_Args...) const noexcept> : assoc<_R, _Args...> {};
public:
using cache_type = _cache<typename _get_func<_F>::type>;
private:
_F __fn;
cache_type __c;
public:
_non_recursive(_F &&__x) noexcept : __fn(__x) {}
// Function call.
template <class... _Args>
decltype(auto) operator()(_Args &&...__args) noexcept(
noexcept(__fn(std::forward<_Args>(__args)...))) {
typename cache_type::key_type __key{__args...};
auto __i = __c.lower_bound(__key);
if _CXX17_CONSTEXPR (cache_type::value) {
if (__i != __c.end() && __i->first == __key) return __i->second;
return __c
.emplace_hint(__i, std::move(__key),
__fn(std::forward<_Args>(__args)...))
->second;
}
else if (__i == __c.end() || *__i != __key)
__c.emplace_hint(__i, std::move(__key)),
__fn(std::forward<_Args>(__args)...);
}
};
template <class _F>
using _cached = std::conditional_t<is_recursive<_F>::value, _recursive<_F>,
_non_recursive<_F>>;
} // namespace _cached_impl
/**
* @brief Cached caller of function
*/
template <class _F> class cached : public _cached_impl::_cached<_F> {
public:
// Construct a new cached object.
cached() noexcept : _cached_impl::_cached<_F>(_F{}) {}
// Construct a new cached object.
cached(_F __x) noexcept : _cached_impl::_cached<_F>(std::move(__x)) {}
};
} // namespace workspace
#line 2 "Library\\src\\utils\\cat.hpp"
/**
* @file cat.hpp
* @brief Cat
*/
#line 9 "Library\\src\\utils\\cat.hpp"
#line 11 "Library\\src\\utils\\cat.hpp"
namespace workspace {
/**
* @brief Concatenate two sequences.
*
* @param __c1
* @param __c2
* @return Concatenated sequence.
*/
template <class _C1, class _C2>
constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2) noexcept {
auto __c = std::forward<_C1>(__c1);
if _CXX17_CONSTEXPR (std::is_rvalue_reference<decltype(__c2)>::value)
__c.insert(std::end(__c), std::make_move_iterator(std::begin(__c2)),
std::make_move_iterator(std::end(__c2)));
else
__c.insert(std::end(__c), std::cbegin(__c2), std::cend(__c2));
return __c;
}
/**
* @return Concatenated sequence.
*/
template <class _C1, class _C2, class... _Args>
constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2,
_Args &&...__args) noexcept {
return cat(cat(std::forward<_C1>(__c1), std::forward<_C2>(__c2)),
std::forward<_Args>(__args)...);
}
} // namespace workspace
#line 2 "Library\\src\\utils\\chval.hpp"
/**
* @file chval.hpp
* @brief Change Less/Greater
*/
#line 9 "Library\\src\\utils\\chval.hpp"
namespace workspace {
/**
* @brief Substitute __y for __x if __y < __x.
* @param __x Reference
* @param __y Comparison target
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2,
typename = decltype(std::declval<_T2>() < std::declval<_T1 &>())>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle(
_T1 &__x, _T2 &&__y) noexcept {
return __y < __x ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __x < __y.
* @param __x Reference
* @param __y Comparison target
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2,
typename = decltype(std::declval<_T1 &>() < std::declval<_T2>())>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr(
_T1 &__x, _T2 &&__y) noexcept {
return __x < __y ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __comp(__y, __x) is true.
* @param __x Reference
* @param __y Comparison target
* @param __comp Compare function object
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(std::declval<_T2>(),
std::declval<_T1 &>()))>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle(
_T1 &__x, _T2 &&__y, _Compare __comp) noexcept {
return __comp(__y, __x) ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __comp(__x, __y) is true.
* @param __x Reference
* @param __y Comparison target
* @param __comp Compare function object
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(std::declval<_T1 &>(),
std::declval<_T2>()))>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr(
_T1 &__x, _T2 &&__y, _Compare __comp) noexcept {
return __comp(__x, __y) ? __x = std::forward<_T2>(__y), true : false;
}
} // namespace workspace
#line 1 "Library\\src\\utils\\compare.hpp"
/**
* @file compare.hpp
* @brief Compare
*/
#line 2 "Library\\src\\utils\\sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#line 10 "Library\\src\\utils\\sfinae.hpp"
#include <type_traits>
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 7 "Library\\src\\utils\\compare.hpp"
#if __cplusplus >= 201703L
namespace workspace {
/**
* @brief Compare 2 points by their value of `atan2`.
*
* @return
*/
template <class _Tp>
bool compare_arg(const _Tp& __p1, const _Tp& __p2) noexcept {
const auto& [__x1, __y1] = __p1;
const auto& [__x2, __y2] = __p2;
using value_type = std::decay_t<decltype(__x1)>;
using mul_type = typename multiplicable<value_type>::type;
if (__y1 == value_type(0))
return value_type(0) <= __x1 &&
(value_type(0) < __y2 ||
(__y2 == value_type(0) && __x2 < value_type(0)));
return value_type(0) < __y1
? value_type(0) <= __y2 &&
mul_type(__y1) * __x2 < mul_type(__x1) * __y2
: value_type(0) <= __y2 ||
mul_type(__y1) * __x2 < mul_type(__x1) * __y2;
}
} // namespace workspace
#endif
#line 2 "Library\\src\\utils\\hash.hpp"
#line 8 "Library\\src\\utils\\hash.hpp"
#line 10 "Library\\src\\utils\\hash.hpp"
namespace workspace {
template <class T, class = void> struct hash : std::hash<T> {};
template <class _Tp> struct hash<_Tp *> : std::hash<_Tp *> {};
#if __cplusplus >= 201703L
template <class Unique_bits_type>
struct hash<Unique_bits_type,
enable_if_trait_type<Unique_bits_type,
std::has_unique_object_representations>> {
size_t operator()(uint64_t x) const {
static const uint64_t m = std::random_device{}();
x ^= x >> 23;
x ^= m;
x ^= x >> 47;
return x - (x >> 32);
}
};
#endif
template <class Key> size_t hash_combine(const size_t &seed, const Key &key) {
return seed ^
(hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);
}
template <class T1, class T2> struct hash<std::pair<T1, T2>> {
size_t operator()(const std::pair<T1, T2> &pair) const {
return hash_combine(hash<T1>()(pair.first), pair.second);
}
};
template <class... T> class hash<std::tuple<T...>> {
template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>
struct tuple_hash {
static uint64_t apply(const Tuple &t) {
return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),
std::get<index>(t));
}
};
template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {
static uint64_t apply(const Tuple &t) { return 0; }
};
public:
uint64_t operator()(const std::tuple<T...> &t) const {
return tuple_hash<std::tuple<T...>>::apply(t);
}
};
template <class hash_table> struct hash_table_wrapper : hash_table {
using key_type = typename hash_table::key_type;
size_t count(const key_type &key) const {
return hash_table::find(key) != hash_table::end();
}
template <class... Args> auto emplace(Args &&... args) {
return hash_table::insert(typename hash_table::value_type(args...));
}
};
template <class Key, class Mapped = __gnu_pbds::null_type>
using cc_hash_table =
hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped = __gnu_pbds::null_type>
using gp_hash_table =
hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped>
using unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;
template <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;
} // namespace workspace
#line 7 "Library\\lib\\utils"
// #include "src/utils/io/istream.hpp"
// #include "src/utils/io/ostream.hpp"
// #include "src/utils/io/read.hpp"
// #include "src/utils/grid/motion.hpp"
#line 2 "Library\\src\\utils\\io\\setup.hpp"
/**
* @file setup.hpp
* @brief I/O Setup
*/
#line 10 "Library\\src\\utils\\io\\setup.hpp"
namespace workspace {
/**
* @brief Setup I/O.
* @param __n Standard output precision
*/
void io_setup(int __n) {
std::cin.tie(0)->sync_with_stdio(0);
std::cout << std::fixed << std::setprecision(__n);
#ifdef _buffer_check
atexit([] {
char bufc;
if (std::cin >> bufc)
std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
} // namespace workspace
#line 12 "Library\\lib\\utils"
// #include "src/utils/iterator/category.hpp"
// #include "src/utils/iterator/reverse.hpp"
// #include "src/utils/make_vector.hpp"
// #include "src/utils/py-like/enumerate.hpp"
#line 2 "Library\\src\\utils\\py-like\\range.hpp"
/**
* @file range.hpp
* @brief Range
*/
#line 9 "Library\\src\\utils\\py-like\\range.hpp"
#line 2 "Library\\src\\utils\\iterator\\reverse.hpp"
/*
* @file reverse_iterator.hpp
* @brief Reverse Iterator
*/
#if __cplusplus >= 201703L
#include <iterator>
#include <optional>
namespace workspace {
/*
* @class reverse_iterator
* @brief Wrapper class for `std::reverse_iterator`.
* @see http://gcc.gnu.org/PR51823
*/
template <class Iterator>
class reverse_iterator : public std::reverse_iterator<Iterator> {
using base_std = std::reverse_iterator<Iterator>;
std::optional<typename base_std::value_type> deref;
public:
using base_std::reverse_iterator;
constexpr typename base_std::reference operator*() noexcept {
if (!deref) {
Iterator tmp = base_std::current;
deref = *--tmp;
}
return deref.value();
}
constexpr reverse_iterator &operator++() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator &operator--() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator++(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator--(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
};
} // namespace workspace
#endif
#line 2 "Library\\src\\utils\\py-like\\reversed.hpp"
/**
* @file reversed.hpp
* @brief Reversed
*/
#include <initializer_list>
#line 10 "Library\\src\\utils\\py-like\\reversed.hpp"
namespace workspace {
namespace _reversed_impl {
template <class _Container> class reversed {
_Container __cont;
public:
constexpr reversed(_Container &&__cont) noexcept : __cont(__cont) {}
constexpr decltype(auto) begin() noexcept { return std::rbegin(__cont); }
constexpr decltype(auto) begin() const noexcept {
return std::rbegin(__cont);
}
constexpr decltype(auto) end() noexcept { return std::rend(__cont); }
constexpr decltype(auto) end() const noexcept { return std::rend(__cont); }
constexpr decltype(auto) size() const noexcept {
return
#if __cplusplus < 201703L
__cont.size();
#else
std::size(__cont);
#endif
}
};
} // namespace _reversed_impl
template <class _Container>
constexpr decltype(auto) reversed(_Container &&__cont) noexcept {
return _reversed_impl::reversed<_Container>{std::forward<_Container>(__cont)};
}
template <class _Tp>
constexpr decltype(auto) reversed(
std::initializer_list<_Tp> &&__cont) noexcept {
return _reversed_impl::reversed<std::initializer_list<_Tp>>{
std::forward<std::initializer_list<_Tp>>(__cont)};
}
} // namespace workspace
#line 12 "Library\\src\\utils\\py-like\\range.hpp"
#if __cplusplus >= 201703L
namespace workspace {
template <class _Index> class range {
_Index __first, __last;
public:
class iterator {
_Index current;
public:
using difference_type = std::ptrdiff_t;
using value_type = _Index;
using reference = typename std::add_const<_Index>::type &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
constexpr iterator(const _Index &__i = _Index()) noexcept : current(__i) {}
constexpr bool operator==(const iterator &__x) const noexcept {
return current == __x.current;
}
constexpr bool operator!=(const iterator &__x) const noexcept {
return current != __x.current;
}
constexpr bool operator<(const iterator &__x) const noexcept {
return current < __x.current;
}
constexpr bool operator<=(const iterator &__x) const noexcept {
return current <= __x.current;
}
constexpr bool operator>(const iterator &__x) const noexcept {
return current > __x.current;
}
constexpr bool operator>=(const iterator &__x) const noexcept {
return current >= __x.current;
}
constexpr iterator &operator++() noexcept {
++current;
return *this;
}
constexpr iterator &operator++(int) noexcept {
auto __tmp = *this;
++current;
return __tmp;
}
constexpr iterator &operator--() noexcept {
--current;
return *this;
}
constexpr iterator &operator--(int) noexcept {
auto __tmp = *this;
--current;
return __tmp;
}
constexpr difference_type operator-(const iterator &__x) const noexcept {
return current - __x.current;
}
constexpr iterator &operator+=(difference_type __x) noexcept {
current += __x;
return *this;
}
constexpr iterator operator+(difference_type __x) const noexcept {
return iterator(*this) += __x;
}
constexpr iterator &operator-=(difference_type __x) noexcept {
current -= __x;
return *this;
}
constexpr iterator operator-(difference_type __x) const noexcept {
return iterator(*this) -= __x;
}
constexpr reference operator*() const noexcept { return current; }
};
template <class _Tp1, class _Tp2>
constexpr range(const _Tp1 &__first, const _Tp2 &__last) noexcept
: __first(__first), __last(__last) {}
template <class _Tp>
constexpr range(const _Tp &__last) noexcept : __first(), __last(__last) {}
constexpr iterator begin() const noexcept { return iterator{__first}; }
constexpr iterator end() const noexcept { return iterator{__last}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>(end());
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>(begin());
}
constexpr size_t size() const noexcept {
return std::distance(__first, __last);
}
};
template <class _Tp1, class _Tp2>
range(const _Tp1 &, const _Tp2 &)
-> range<std::decay_t<decltype(++std::declval<_Tp1 &>())>>;
template <class _Tp>
range(const _Tp &) -> range<std::decay_t<decltype(++std::declval<_Tp &>())>>;
template <class... _Args>
constexpr decltype(auto) rrange(_Args &&...__args) noexcept {
return reversed(range(std::forward<_Args>(__args)...));
}
template <class _Container>
constexpr decltype(auto) iterate(_Container &&__cont) noexcept {
return range(std::begin(__cont), std::end(__cont));
}
template <class _Container>
constexpr decltype(auto) riterate(_Container &&__cont) noexcept {
return range(std::rbegin(__cont), std::rend(__cont));
}
} // namespace workspace
#endif
#line 17 "Library\\lib\\utils"
// #include "src/utils/py-like/reversed.hpp"
#line 2 "Library\\src\\utils\\py-like\\zip.hpp"
/**
* @file zip.hpp
* @brief Zip
*/
#line 11 "Library\\src\\utils\\py-like\\zip.hpp"
#line 2 "Library\\src\\utils\\iterator\\category.hpp"
/*
* @file category.hpp
* @brief Iterator Category
*/
#line 10 "Library\\src\\utils\\iterator\\category.hpp"
namespace workspace {
/*
* @tparam Tuple Tuple of iterator types
*/
template <class Tuple, size_t N = std::tuple_size<Tuple>::value - 1>
struct common_iterator_category {
using type = typename std::common_type<
typename common_iterator_category<Tuple, N - 1>::type,
typename std::iterator_traits<typename std::tuple_element<
N, Tuple>::type>::iterator_category>::type;
};
template <class Tuple> struct common_iterator_category<Tuple, 0> {
using type = typename std::iterator_traits<
typename std::tuple_element<0, Tuple>::type>::iterator_category;
};
} // namespace workspace
#line 15 "Library\\src\\utils\\py-like\\zip.hpp"
#if __cplusplus >= 201703L
namespace workspace {
namespace internal {
template <class> struct zipped_iterator;
template <class...> struct zipped_iterator_tuple;
template <class... Args> class zipped {
using ref_tuple = std::tuple<Args...>;
ref_tuple args;
template <size_t N = 0> constexpr decltype(auto) begin_cat() const noexcept {
if _CXX17_CONSTEXPR (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::begin(std::get<N>(args))),
begin_cat<N + 1>());
} else
return std::tuple<>();
}
template <size_t N = 0> constexpr decltype(auto) end_cat() const noexcept {
if _CXX17_CONSTEXPR (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::end(std::get<N>(args))),
end_cat<N + 1>());
} else
return std::tuple<>();
}
public:
constexpr zipped(Args &&...args) noexcept : args(args...) {}
class iterator {
using base_tuple = typename zipped_iterator_tuple<Args...>::type;
public:
using iterator_category =
typename common_iterator_category<base_tuple>::type;
using difference_type = std::ptrdiff_t;
using value_type = zipped_iterator<base_tuple>;
using reference = zipped_iterator<base_tuple> &;
using pointer = iterator;
protected:
value_type current;
template <size_t N = 0>
constexpr bool equal(const iterator &rhs) const noexcept {
if _CXX17_CONSTEXPR (N != std::tuple_size<base_tuple>::value) {
return std::get<N>(current) == std::get<N>(rhs.current) ||
equal<N + 1>(rhs);
} else
return false;
}
template <size_t N = 0> constexpr void increment() noexcept {
if _CXX17_CONSTEXPR (N != std::tuple_size<base_tuple>::value) {
++std::get<N>(current);
increment<N + 1>();
}
}
template <size_t N = 0> constexpr void decrement() noexcept {
if _CXX17_CONSTEXPR (N != std::tuple_size<base_tuple>::value) {
--std::get<N>(current);
decrement<N + 1>();
}
}
template <size_t N = 0>
constexpr void advance(difference_type __d) noexcept {
if _CXX17_CONSTEXPR (N != std::tuple_size<base_tuple>::value) {
std::get<N>(current) += __d;
advance<N + 1>(__d);
}
}
public:
constexpr iterator() noexcept = default;
constexpr iterator(base_tuple const ¤t) noexcept : current(current) {}
constexpr bool operator==(const iterator &rhs) const noexcept {
return equal(rhs);
}
constexpr bool operator!=(const iterator &rhs) const noexcept {
return !equal(rhs);
}
constexpr iterator &operator++() noexcept {
increment();
return *this;
}
constexpr iterator &operator--() noexcept {
decrement();
return *this;
}
constexpr bool operator<(const iterator &rhs) const noexcept {
return std::get<0>(current) < std::get<0>(rhs.current);
}
constexpr bool operator<=(const iterator &rhs) const noexcept {
return std::get<0>(current) <= std::get<0>(rhs.current);
}
constexpr iterator &operator+=(difference_type __d) noexcept {
advance(__d);
return *this;
}
constexpr iterator &operator-=(difference_type __d) noexcept {
advance(-__d);
return *this;
}
constexpr iterator operator+(difference_type __d) const noexcept {
return iterator{*this} += __d;
}
constexpr iterator operator-(difference_type __d) const noexcept {
return iterator{*this} -= __d;
}
constexpr difference_type operator-(const iterator &rhs) const noexcept {
return std::get<0>(current) - std::get<0>(rhs.current);
}
constexpr reference operator*() noexcept { return current; }
};
constexpr iterator begin() const noexcept { return iterator{begin_cat()}; }
constexpr iterator end() const noexcept { return iterator{end_cat()}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>{end()};
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>{begin()};
}
};
template <class Tp, class... Args> struct zipped_iterator_tuple<Tp, Args...> {
using type = decltype(std::tuple_cat(
std::declval<std::tuple<decltype(std::begin(std::declval<Tp>()))>>(),
std::declval<typename zipped_iterator_tuple<Args...>::type>()));
};
template <> struct zipped_iterator_tuple<> { using type = std::tuple<>; };
template <class Iter_tuple> struct zipped_iterator : Iter_tuple {
constexpr zipped_iterator(Iter_tuple const &__t) noexcept
: Iter_tuple::tuple(__t) {}
constexpr zipped_iterator(zipped_iterator const &__t) = default;
constexpr zipped_iterator &operator=(zipped_iterator const &__t) = default;
// Avoid move initialization.
constexpr zipped_iterator(zipped_iterator &&__t)
: zipped_iterator(static_cast<zipped_iterator const &>(__t)) {}
// Avoid move assignment.
zipped_iterator &operator=(zipped_iterator &&__t) {
return operator=(static_cast<zipped_iterator const &>(__t));
}
template <size_t N>
friend constexpr decltype(auto) get(
zipped_iterator<Iter_tuple> const &__z) noexcept {
return *std::get<N>(__z);
}
template <size_t N>
friend constexpr decltype(auto) get(
zipped_iterator<Iter_tuple> &&__z) noexcept {
return *std::get<N>(__z);
}
};
} // namespace internal
} // namespace workspace
namespace std {
template <size_t N, class Iter_tuple>
struct tuple_element<N, workspace::internal::zipped_iterator<Iter_tuple>> {
using type = typename remove_reference<typename iterator_traits<
typename tuple_element<N, Iter_tuple>::type>::reference>::type;
};
template <class Iter_tuple>
struct tuple_size<workspace::internal::zipped_iterator<Iter_tuple>>
: tuple_size<Iter_tuple> {};
} // namespace std
namespace workspace {
template <class... Args> constexpr decltype(auto) zip(Args &&...args) noexcept {
return internal::zipped<Args...>(std::forward<Args>(args)...);
}
template <class... Args>
constexpr decltype(auto) zip(
std::initializer_list<Args> const &...args) noexcept {
return internal::zipped<const std::initializer_list<Args>...>(args...);
}
} // namespace workspace
#endif
#line 2 "Library\\src\\utils\\rand\\rng.hpp"
/**
* @file rng.hpp
* @brief Random Number Generator
*/
#line 9 "Library\\src\\utils\\rand\\rng.hpp"
namespace workspace {
template <typename _Arithmetic>
using uniform_distribution = typename std::conditional<
std::is_integral<_Arithmetic>::value,
std::uniform_int_distribution<_Arithmetic>,
std::uniform_real_distribution<_Arithmetic>>::type;
template <typename _Arithmetic, class _Engine = std::mt19937>
class random_number_generator : uniform_distribution<_Arithmetic> {
using base = uniform_distribution<_Arithmetic>;
_Engine __engine;
public:
random_number_generator(_Arithmetic __min, _Arithmetic __max)
: base(__min, __max), __engine(std::random_device{}()) {}
random_number_generator(_Arithmetic __max = 1)
: random_number_generator(0, __max) {}
random_number_generator(typename base::param_type const& __param)
: base(__param), __engine(std::random_device{}()) {}
decltype(auto) operator()() noexcept { return base::operator()(__engine); }
};
} // namespace workspace
#line 2 "Library\\src\\utils\\rand\\shuffle.hpp"
/**
* @file shuffle.hpp
* @brief Shuffle
*/
#line 10 "Library\\src\\utils\\rand\\shuffle.hpp"
namespace workspace {
template <class _RAIter, class _Engine = std::mt19937>
void shuffle(_RAIter __first, _RAIter __last) {
static _Engine __engine(std::random_device{}());
std::shuffle(__first, __last, __engine);
}
} // namespace workspace
#line 2 "Library\\src\\utils\\round_div.hpp"
/*
* @file round_div.hpp
* @brief Round Integer Division
*/
#line 9 "Library\\src\\utils\\round_div.hpp"
#line 11 "Library\\src\\utils\\round_div.hpp"
namespace workspace {
/*
* @fn floor_div
* @brief floor of fraction.
* @param x the numerator
* @param y the denominator
* @return maximum integer z s.t. z <= x / y
* @note y must be nonzero.
*/
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
is_integral_ext<T2>::value),
typename std::common_type<T1, T2>::type>::type
floor_div(T1 x, T2 y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return x < 0 ? (x - y + 1) / y : x / y;
}
/*
* @fn ceil_div
* @brief ceil of fraction.
* @param x the numerator
* @param y the denominator
* @return minimum integer z s.t. z >= x / y
* @note y must be nonzero.
*/
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
is_integral_ext<T2>::value),
typename std::common_type<T1, T2>::type>::type
ceil_div(T1 x, T2 y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return x < 0 ? x / y : (x + y - 1) / y;
}
} // namespace workspace
#line 22 "Library\\lib\\utils"
// #include "src\utils\rand\tree.hpp"
// #include "src\utils\reference_list.hpp"
#line 2 "Library\\src\\utils\\io\\input.hpp"
/**
* @file input.hpp
* @brief Input
*/
#line 2 "Library\\src\\utils\\io\\istream.hpp"
/**
* @file istream.hpp
* @brief Input Stream
*/
#include <cxxabi.h>
#line 13 "Library\\src\\utils\\io\\istream.hpp"
#line 16 "Library\\src\\utils\\io\\istream.hpp"
namespace workspace {
namespace _istream_impl {
template <class _Tp, typename = void> struct helper {
helper(std::istream &__is, _Tp &__x) {
if _CXX17_CONSTEXPR (has_begin<_Tp &>::value)
for (auto &&__e : __x) helper<std::decay_t<decltype(__e)>>(__is, __e);
else
static_assert(has_begin<_Tp>::value, "istream unsupported type.");
}
};
template <class _Tp>
struct helper<_Tp, std::__void_t<decltype(std::declval<std::istream &>() >>
std::declval<_Tp &>())>> {
helper(std::istream &__is, _Tp &__x) { __is >> __x; }
};
#ifdef __SIZEOF_INT128__
template <> struct helper<__uint128_t, void> {
helper(std::istream &__is, __uint128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
template <> struct helper<__int128_t, void> {
helper(std::istream &__is, __int128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
#endif // INT128
template <class _T1, class _T2> struct helper<std::pair<_T1, _T2>> {
helper(std::istream &__is, std::pair<_T1, _T2> &__x) {
helper<_T1>(__is, __x.first), helper<_T2>(__is, __x.second);
}
};
template <class... _Tp> struct helper<std::tuple<_Tp...>> {
helper(std::istream &__is, std::tuple<_Tp...> &__x) { iterate(__is, __x); }
private:
template <class _Tuple, size_t _Nm = 0>
void iterate(std::istream &__is, _Tuple &__x) {
if _CXX17_CONSTEXPR (_Nm != std::tuple_size<_Tuple>::value) {
helper<typename std::tuple_element<_Nm, _Tuple>::type>(
__is, std::get<_Nm>(__x)),
iterate<_Tuple, _Nm + 1>(__is, __x);
}
}
};
} // namespace _istream_impl
/**
* @brief A wrapper class for std::istream.
*/
class istream : public std::istream {
public:
/**
* @brief Wrapped operator.
*/
template <typename _Tp> istream &operator>>(_Tp &__x) {
_istream_impl::helper<_Tp>(*this, __x);
if (std::istream::fail()) {
static auto once = atexit([] {
std::cerr << "\n\033[43m\033[30mwarning: failed to read \'"
<< abi::__cxa_demangle(typeid(_Tp).name(), 0, 0, 0)
<< "\'.\033[0m\n\n";
});
assert(!once);
}
return *this;
}
};
decltype(auto) cin = static_cast<istream &>(std::cin);
} // namespace workspace
#line 10 "Library\\src\\utils\\io\\input.hpp"
namespace workspace {
namespace _input_impl {
template <class _Tp, bool _Is_class = false> class input {
_Tp __value;
template <class _Arg, class... _Args> struct is_same : std::false_type {};
template <class _Arg> struct is_same<_Arg, _Arg> : std::true_type {};
public:
operator _Tp &() noexcept { return __value; }
operator const _Tp &() const noexcept { return __value; }
template <class... _Args>
input(_Args &&...__args) noexcept : __value(std::forward<_Args>(__args)...) {
if _CXX17_CONSTEXPR (!is_same<decltype(*this), _Args...>::value &&
!is_same<_Tp, _Args...>::value)
cin >> __value;
}
input &operator=(const _Tp &__x) noexcept { return __value = __x, *this; }
};
template <class _Tp> class input<_Tp, true> : public _Tp {
template <class _Arg, class... _Args> struct is_same : std::false_type {};
template <class _Arg> struct is_same<_Arg, _Arg> : std::true_type {};
public:
operator _Tp &() noexcept { return *this; }
operator const _Tp &() const noexcept { return *this; }
template <class... _Args>
input(_Args &&...__args) noexcept : _Tp(std::forward<_Args>(__args)...) {
if _CXX17_CONSTEXPR (!is_same<decltype(*this), _Args...>::value &&
!is_same<_Tp, _Args...>::value)
cin >> *this;
}
input &operator=(const _Tp &__x) noexcept {
_Tp::operator=(__x);
return *this;
}
};
} // namespace _input_impl
// Standard input.
template <class _Tp = int_least64_t>
class input : public _input_impl::input<_Tp, std::is_class<_Tp>::value> {
public:
using _input_impl::input<_Tp, std::is_class<_Tp>::value>::input;
};
// Integrality.
template <class _Tp>
struct is_integral_ext<input<_Tp>> : is_integral_ext<_Tp> {};
} // namespace workspace
#line 16 "other-workspace\\y.cc"
//*/
signed main() {
using namespace workspace;
io_setup(15);
/* given
case_info.read(); //*/
/* unspecified
case_info.total = -1; //*/
return case_info.iterate();
}
#line 2 "Library\\src\\algebra\\modint.hpp"
/**
* @file modint.hpp
*
* @brief Modular Arithmetic
*/
#line 12 "Library\\src\\algebra\\modint.hpp"
#line 2 "Library\\src\\number_theory\\sqrt_mod.hpp"
/**
* @file sqrt_mod.hpp
* @brief Tonelli-Shanks Algorithm
*/
#line 2 "Library\\src\\number_theory\\pow_mod.hpp"
/**
* @file mod_pow.hpp
* @brief Modular Exponentiation
*/
#line 9 "Library\\src\\number_theory\\pow_mod.hpp"
#line 11 "Library\\src\\number_theory\\pow_mod.hpp"
namespace workspace {
/**
* @brief Compile time modular exponentiation.
*
* @param __x
* @param __n Exponent
* @param __mod Modulus
* @return
*/
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> pow_mod(
_Tp __x, _Tp __n, _Tp __mod) noexcept {
assert(__mod > 0);
using mul_type = typename multiplicable_uint<_Tp>::type;
if ((__x %= __mod) < 0) __x += __mod;
mul_type __y{1};
while (__n) {
if (__n & 1) (__y *= __x) %= __mod;
__x = (mul_type)__x * __x % __mod;
__n >>= 1;
}
return __y;
};
} // namespace workspace
#line 10 "Library\\src\\number_theory\\sqrt_mod.hpp"
namespace workspace {
/**
* @brief Compile time modular square root.
*
* @param __x
* @param __mod Modulus
* @return One if it exists. Otherwise -1.
*/
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> sqrt_mod(
_Tp __x, _Tp __mod) noexcept {
assert(__mod > 0);
using mul_type = typename multiplicable_uint<_Tp>::type;
if ((__x %= __mod) < 0) __x += __mod;
if (!__x) return 0;
if (__mod == 2) return __x;
if (pow_mod(__x, __mod >> 1, __mod) != 1) return -1;
_Tp __z = __builtin_ctz(__mod - 1), __q = __mod >> __z;
mul_type __a = pow_mod(__x, (__q + 1) >> 1, __mod), __b = 2;
while (pow_mod<_Tp>(__b, __mod >> 1, __mod) == 1) ++__b;
__b = pow_mod<_Tp>(__b, __q, __mod);
_Tp __shift = 0;
for (auto __r = __a * __a % __mod * pow_mod(__x, __mod - 2, __mod) % __mod;
__r != 1; (__r *= (__b *= __b) %= __mod) %= __mod) {
auto __bsf = __z;
for (auto __e = __r; __e != 1; --__bsf) (__e *= __e) %= __mod;
while (++__shift != __bsf) (__b *= __b) %= __mod;
(__a *= __b) %= __mod;
}
return __a;
};
} // namespace workspace
#line 15 "Library\\src\\algebra\\modint.hpp"
namespace workspace {
namespace _modint_impl {
template <auto _Mod, unsigned _Storage> struct modint {
static_assert(is_integral_ext<decltype(_Mod)>::value,
"_Mod must be integral type.");
using mod_type = std::make_signed_t<typename std::conditional<
0 < _Mod, std::add_const_t<decltype(_Mod)>, decltype(_Mod)>::type>;
using value_type = std::decay_t<mod_type>;
using mul_type = typename multiplicable_uint<value_type>::type;
// Modulus
static mod_type mod;
static unsigned storage;
private:
value_type value = 0;
struct direct_ctor_t {};
constexpr static direct_ctor_t direct_ctor_tag{};
// Direct constructor
template <class _Tp>
constexpr modint(_Tp __n, direct_ctor_t) noexcept : value(__n) {}
public:
constexpr modint() noexcept = default;
template <class _Tp, class = std::enable_if_t<
std::is_convertible<_Tp, value_type>::value>>
constexpr modint(_Tp __n) noexcept
: value((__n %= mod) < 0 ? __n + mod : __n) {}
constexpr modint(bool __n) noexcept : value(__n) {}
constexpr operator value_type() const noexcept { return value; }
// unary operators {{
constexpr modint operator++(int) noexcept {
modint __t{*this};
operator++();
return __t;
}
constexpr modint operator--(int) noexcept {
modint __t{*this};
operator--();
return __t;
}
constexpr modint &operator++() noexcept {
if (++value == mod) value = 0;
return *this;
}
constexpr modint &operator--() noexcept {
if (!value)
value = mod - 1;
else
--value;
return *this;
}
constexpr modint operator+() const noexcept { return *this; }
constexpr modint operator-() const noexcept {
return {value ? mod - value : 0, direct_ctor_tag};
}
// }} unary operators
// operator+= {{
constexpr modint &operator+=(const modint &__x) noexcept {
if ((value += __x.value) >= mod) value -= mod;
return *this;
}
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator+=(
_Tp __x) noexcept {
__x %= mod, value += __x;
if (value < 0)
value += mod;
else if (value >= mod)
value -= mod;
return *this;
}
// }} operator+=
// operator+ {{
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator+(
_Tp const &__x) const noexcept {
return modint{*this} += __x;
}
constexpr modint operator+(modint __x) const noexcept { return __x += *this; }
template <class _Tp>
constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
operator+(_Tp const &__x, modint __y) noexcept {
return __y += __x;
}
// }} operator+
// operator-= {{
constexpr modint &operator-=(const modint &__x) noexcept {
if ((value -= __x.value) < 0) value += mod;
return *this;
}
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator-=(
_Tp __x) noexcept {
__x %= mod, value -= __x;
if (value < 0)
value += mod;
else if (value >= mod)
value -= mod;
return *this;
}
// }} operator-=
// operator- {{
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator-(
_Tp const &__x) const noexcept {
return modint{*this} -= __x;
}
constexpr modint operator-(const modint &__x) const noexcept {
return modint{*this} -= __x;
}
template <class _Tp>
constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
operator-(_Tp __x, const modint &__y) noexcept {
if (((__x -= __y.value) %= mod) < 0) __x += mod;
return {__x, direct_ctor_tag};
}
// }} operator-
// operator*= {{
constexpr modint &operator*=(const modint &__x) noexcept {
value =
static_cast<value_type>(value * static_cast<mul_type>(__x.value) % mod);
return *this;
}
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator*=(
_Tp __x) noexcept {
value = static_cast<value_type>(
value * mul_type((__x %= mod) < 0 ? __x + mod : __x) % mod);
return *this;
}
// }} operator*=
// operator* {{
constexpr modint operator*(const modint &__x) const noexcept {
return {static_cast<mul_type>(value) * __x.value % mod, direct_ctor_tag};
}
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator*(
_Tp __x) const noexcept {
__x %= mod;
if (__x < 0) __x += mod;
return {static_cast<mul_type>(value) * __x % mod, direct_ctor_tag};
}
template <class _Tp>
constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
operator*(_Tp __x, const modint &__y) noexcept {
__x %= mod;
if (__x < 0) __x += mod;
return {static_cast<mul_type>(__x) * __y.value % mod, direct_ctor_tag};
}
// }} operator*
protected:
static value_type _mem(value_type __x) {
static std::vector<value_type> __m{0, 1};
static value_type __i = (__m.reserve(storage), 1);
while (__i < __x) {
++__i;
__m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod);
}
return __m[__x];
}
static value_type _div(mul_type __r, value_type __x) noexcept {
assert(__x != value_type(0));
if (!__r) return 0;
std::make_signed_t<value_type> __v{};
bool __neg = __x < 0 ? __x = -__x, true : false;
if (static_cast<decltype(storage)>(__x) < storage)
__v = _mem(__x);
else {
value_type __y{mod}, __u{1}, __t;
while (__x)
__t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x,
__v ^= __u ^= (__v -= __t * __u) ^= __u;
if (__y < 0) __neg ^= 1;
}
if (__neg)
__v = 0 < __v ? mod - __v : -__v;
else if (__v < 0)
__v += mod;
return __r == mul_type(1) ? static_cast<value_type>(__v)
: static_cast<value_type>(__r * __v % mod);
}
public:
static void reserve(unsigned __n) noexcept {
if (storage < __n) storage = __n;
}
// operator/= {{
constexpr modint &operator/=(const modint &__x) noexcept {
if (value) value = _div(value, __x.value);
return *this;
}
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> &operator/=(
_Tp __x) noexcept {
if (value) value = _div(value, __x %= mod);
return *this;
}
// }} operator/=
// operator/ {{
constexpr modint operator/(const modint &__x) const noexcept {
if (!value) return {};
return {_div(value, __x.value), direct_ctor_tag};
}
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> operator/(
_Tp __x) const noexcept {
if (!value) return {};
return {_div(value, __x %= mod), direct_ctor_tag};
}
template <class _Tp>
constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint>
operator/(_Tp __x, const modint &__y) noexcept {
if (!__x) return {};
if ((__x %= mod) < 0) __x += mod;
return {_div(__x, __y.value), direct_ctor_tag};
}
// }} operator/
constexpr modint inv() const noexcept { return _div(1, value); }
template <class _Tp>
constexpr std::enable_if_t<is_integral_ext<_Tp>::value, modint> pow(
_Tp __e) const noexcept {
modint __r{mod != 1, direct_ctor_tag};
for (modint __b{__e < 0 ? __e = -__e, _div(1, value) : value,
direct_ctor_tag};
__e; __e >>= 1, __b *= __b)
if (__e & 1) __r *= __b;
return __r;
}
template <class _Tp>
constexpr friend std::enable_if_t<is_integral_ext<_Tp>::value, modint> pow(
modint __b, _Tp __e) noexcept {
if (__e < 0) {
__e = -__e;
__b.value = _div(1, __b.value);
}
modint __r{mod != 1, direct_ctor_tag};
for (; __e; __e >>= 1, __b *= __b)
if (__e & 1) __r *= __b;
return __r;
}
constexpr modint sqrt() const noexcept {
return {sqrt_mod(value, mod), direct_ctor_tag};
}
friend constexpr modint sqrt(const modint &__x) noexcept {
return {sqrt_mod(__x.value, mod), direct_ctor_tag};
}
friend std::istream &operator>>(std::istream &__is, modint &__x) noexcept {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') {
__neg = true;
__s.erase(__s.begin());
}
__x = 0;
for (char __c : __s) __x = __x * 10 + (__c - '0');
if (__neg) __x = -__x;
return __is;
}
};
template <auto _Mod, unsigned _Storage>
typename modint<_Mod, _Storage>::mod_type modint<_Mod, _Storage>::mod =
_Mod > 0 ? _Mod : 0;
template <auto _Mod, unsigned _Storage>
unsigned modint<_Mod, _Storage>::storage = _Storage;
} // namespace _modint_impl
template <auto _Mod, unsigned _Storage = 0,
typename = std::enable_if_t<(_Mod > 0)>>
using modint = _modint_impl::modint<_Mod, _Storage>;
template <unsigned _Id = 0, unsigned _Storage = 0>
using runtime_modint = _modint_impl::modint<-(signed)_Id, 0>;
template <unsigned _Id = 0, unsigned _Storage = 0>
using runtime_modint64 = _modint_impl::modint<-(int_least64_t)_Id, 0>;
} // namespace workspace
#line 2 "Library\\src\\number_theory\\least_factor.hpp"
/**
* @file least_factor.hpp
* @brief Least Prime Factor
*/
#line 10 "Library\\src\\number_theory\\least_factor.hpp"
#line 12 "Library\\src\\number_theory\\least_factor.hpp"
namespace workspace {
/**
* @brief Calculate the least prime factor for positive integers.
*
* @tparam N Range of calculation, exclusive
*/
template <unsigned N> class least_factor {
unsigned least[N], prime[N >> 1], n;
public:
least_factor() : least{}, prime{}, n{} {
for (auto i = 2u; i < N; ++i) {
if (!least[i]) prime[n++] = least[i] = i;
for (auto *p = prime; *p && *p <= least[i] && *p * i < N; ++p) {
least[*p * i] = *p;
}
}
}
/**
* @param x An integer with 0 < |x| < N
* @return Least prime factor of x
*/
template <typename int_type>
constexpr
typename std::enable_if<is_integral_ext<int_type>::value, int_type>::type
operator()(int_type x) const {
assert(x);
if (x < 0) x = -x;
assert((unsigned)x < N);
return least[x];
}
/**
* @brief Factorize
*
* @param x An integer with 0 < |x| < N
* @return Prime factors in ascending order.
*/
template <typename int_type>
constexpr typename std::enable_if<is_integral_ext<int_type>::value,
std::vector<int_type>>::type
factorize(int_type x) const {
assert(x);
if (x < 0) x = -x;
assert((unsigned)x < N);
std::vector<int_type> __p;
while (x != 1) {
__p.emplace_back(least[x]);
x /= least[x];
}
return __p;
}
/**
* @return Sorted list of prime numbers less than N
*/
const std::vector<unsigned> &primes() const {
static const std::vector<unsigned> prime_vector(prime, prime + n);
return prime_vector;
}
};
} // namespace workspace
#line 34 "other-workspace\\y.cc"
namespace workspace {
using mint = modint<1000000007>;
constexpr int max_val = 200100;
least_factor<max_val> lpf;
void main() {
// start here!
array<i64, max_val> a, b;
for (auto m : range(2, a.size())) {
auto &d = a[m];
auto &e = b[m];
auto p = lpf(m);
d = 1;
while (m % p == 0) d *= p, m /= p;
e = m;
}
unordered_map<u64, mint> memo_f;
unordered_map<u64, mint> memo_g;
fixed_point f = [&](auto f, i64 n, int m) -> mint {
if (m == 1) return n;
if (memo_f.count(n << 32 | m)) return memo_f[n << 32 | m];
auto p = lpf(m);
auto s1 = f(n, m / p);
auto s2 = f(n / a[m], b[m]);
return memo_f[n << 32 | m] = s1 + s2 * (p - 1) * (a[m] / p);
};
fixed_point g = [&](auto g, i64 n, int m) -> mint {
if (m == 1) return n * (n + 1) / 2;
if (memo_g.count(n << 32 | m)) return memo_g[n << 32 | m];
auto p = lpf(m);
auto s1 = g(n, m / p);
auto s2 = g(n / a[m], b[m]) * a[m];
return memo_g[n << 32 | m] = s1 + s2 * (p - 1) * (a[m] / p);
};
#ifdef _LOCAL
// debug f, g
for (auto x : range(1, 10)) {
for (auto y : range(1, 10)) {
auto my = f(x, y);
mint cor = 0;
for (auto i : range(1, x + 1)) {
cor += std::gcd(i, y);
}
assert(cor == my);
my = g(x, y);
cor = 0;
for (auto i : range(1, x + 1)) {
cor += std::gcd(i, y) * i;
}
assert(cor == my);
}
}
#endif
const input N, M;
auto now = mint((int)N) * (N - 1) * (N - 2) / 6;
mint answer = N * M;
answer = answer * (answer - 1) * (answer - 2) / 6;
answer -= now;
for (auto m : range(1, M)) {
now += N * 2 * f(N - 1, m);
now -= 2 * g(N - 1, m);
now -= N * N;
now += N * m;
answer -= now;
}
cout << answer << "\n";
}
} // namespace workspace
jell