結果

問題 No.129 お年玉(2)
ユーザー kohei2019
提出日時 2021-07-28 21:16:00
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 215 ms / 5,000 ms
コード長 6,710 bytes
コンパイル時間 589 ms
コンパイル使用メモリ 82,260 KB
実行使用メモリ 81,160 KB
最終ジャッジ日時 2024-09-13 17:56:51
合計ジャッジ時間 8,575 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import math
import sys
sys.setrecursionlimit(10**7)
#
class segki_pro_mod():
def __init__(self, N, ls, mod):
self.mod = mod
self.default = 1
self.func = (lambda x, y: (x * y) % self.mod)
self.N = N
self.K = (N - 1).bit_length()
self.N2 = 1 << self.K
self.dat = [self.default] * (2**(self.K + 1))
for i in range(self.N): #
self.dat[self.N2 + i] = ls[i]
self.build()
def build(self):
for j in range(self.N2 - 1, -1, -1):
self.dat[j] = self.func(self.dat[j << 1], self.dat[j << 1 | 1]) #
def leafvalue(self, x): # x
return self.dat[x + self.N2]
def update(self, x, y): # index(x)y
i = x + self.N2
self.dat[i] = y
while i > 0: #
i >>= 1
self.dat[i] = self.func(self.dat[i << 1], self.dat[i << 1 | 1])
return
def query(self, L, R): # [L,R)
L += self.N2
R += self.N2
vL = self.default
vR = self.default
while L < R:
if L & 1:
vL = self.func(vL, self.dat[L])
L += 1
if R & 1:
R -= 1
vR = self.func(self.dat[R], vR)
L >>= 1
R >>= 1
return self.func(vL, vR)
class integerlib():
def __init__(self):
pass
def primeset(self,N): #Nset.O(√Nlog(N))
lsx = [1]*(N+1)
for i in range(2,int(-(-N**0.5//1))+1):
if lsx[i] == 1:
for j in range(i,N//i+1):
lsx[j*i] = 0
setprime = set()
for i in range(2,N+1):
if lsx[i] == 1:
setprime.add(i)
return setprime
def defprime(self,N):#O(√Nlog(N))
return N in self.primeset(N)
def gcd(self,ls):#
ls = list(ls)
ans = 0
for i in ls:
ans = math.gcd(ans,i)
return ans
def lmc(self,ls):#
ls = list(ls)
ans = self.gcd(ls)
for i in ls:
ans = self.lmcsub(ans,i)
return ans
def lmcsub(self,a,b):
gcd = math.gcd(a,b)
lmc = (a*b)//gcd
return lmc
def factorization(self,N):#√N
arr = []
temp = N
for i in range(2, int(-(-N**0.5//1))+1):
if temp%i==0:
cnt=0
while temp%i==0:
cnt+=1
temp //= i
arr.append([i, cnt])
if temp!=1:
arr.append([temp, 1])
if arr==[]:
arr.append([N, 1])
return arr #[]
def factorizationset(self,N):#√N,
if N == 1:
return set()
ls = self.factorization(N)
setf = set()
for j in ls:
setf.add(j[0])
return setf
def divisorsnum(self,N):#
ls = []
for i in self.factorization(N):
ls.append(i[1])
d = 1
for i in ls:
d *= i+1
return d
def Eulerfunc(self,N):#N1,2,…,NN
ls = list(self.factorizationset(N))
ls2 = [N]
for i in ls:
ls2.append(ls2[-1]-ls2[-1]//i)
return ls2[-1]
def make_divisors(self,N):#O(√N)
lower_divisors , upper_divisors = [], []
i = 1
while i*i <= N:
if N % i == 0:
lower_divisors.append(i)
if i != N // i:
upper_divisors.append(N//i)
i += 1
return lower_divisors + upper_divisors[::-1]
def invmod(self,a,mod):#mod
a %= mod
if a == 0:
return 0
if a == 1:
return 1
return (-self.invmod(mod % a, mod) * (mod // a)) % mod
def cmbmod(self,n, r, mod):#nCr % mod
inv = [0,1]
for i in range(2, n + 1):
inv.append((-inv[mod % i] * (mod // i)) % mod)
cmd = 1
for i in range(1,min(r,n-r)+1):
cmd = (cmd*(n-i+1)*inv[i])%mod
return cmd
def permmod(self,n, r, mod):#nPr % mod
perm = 1
for i in range(n,r-1,-1):
perm = (perm*i)%mod
return perm
def modPow(self,a,n,mod):# a**n % mod
if n==0:
return 1
if n==1:
return a%mod
if n % 2 == 1:
return (a*self.modPow(a,n-1,mod)) % mod
t = self.modPow(a,n//2,mod)
return (t*t)%mod
def invmodls(self,n,mod):#ninvmod
inv = [0,1]
for i in range(2, n + 1):
inv.append((-inv[mod % i] * (mod // i)) % mod)
return inv
def factorization_all_n(self,n):#n
lspn = [[] for i in range(n+1)]
lsnum = [i for i in range(n+1)]
lsp = list(self.primeset(n))
lsp.sort()
for p in lsp:
for j in range(1,n//p+1):
cnt = 0
while lsnum[p*j]%p==0:
lsnum[p*j] //= p
cnt += 1
lspn[j*p].append((p,cnt))
return lspn
def cmbmodls(self,n,mod):#使ver
lsans = [1]
lsp = list(self.primeset(n))
lsp.sort()
invp = [0]*(n+1)
lspmod = []
for i in range(len(lsp)):
invp[lsp[i]] =i
lspmod.append(lsp[i]%mod)
lsX = [0]*(len(lsp))
SG = segki_pro_mod(len(lsp),[1]*len(lsp),mod)
lspn = self.factorization_all_n(n)
for i in range(1,n+1):
l = n-i+1
r = i
change = set()
for p,cnt in lspn[l]:
lsX[invp[p]] += cnt
change.add(invp[p])
for p,cnt in lspn[r]:
lsX[invp[p]] -= cnt
change.add(invp[p])
changels = list(change)
for j in changels:
SG.update(j,self.modPow(lsp[j],lsX[j],mod))
lsans.append(SG.dat[1])
return lsans
N = int(input())
M = int(input())
rm = (N%(M*1000))//1000
mod = 10**9
IT = integerlib()
ls = IT.cmbmodls(M,mod)
print(ls[rm])
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0