結果
問題 | No.129 お年玉(2) |
ユーザー |
|
提出日時 | 2021-07-28 21:16:00 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 215 ms / 5,000 ms |
コード長 | 6,710 bytes |
コンパイル時間 | 589 ms |
コンパイル使用メモリ | 82,260 KB |
実行使用メモリ | 81,160 KB |
最終ジャッジ日時 | 2024-09-13 17:56:51 |
合計ジャッジ時間 | 8,575 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 46 |
ソースコード
import mathimport syssys.setrecursionlimit(10**7)#競技プログラミング対整数問題のライブラリーですclass segki_pro_mod():def __init__(self, N, ls, mod):self.mod = modself.default = 1self.func = (lambda x, y: (x * y) % self.mod)self.N = Nself.K = (N - 1).bit_length()self.N2 = 1 << self.Kself.dat = [self.default] * (2**(self.K + 1))for i in range(self.N): # 葉の構築self.dat[self.N2 + i] = ls[i]self.build()def build(self):for j in range(self.N2 - 1, -1, -1):self.dat[j] = self.func(self.dat[j << 1], self.dat[j << 1 | 1]) # 親が持つ条件def leafvalue(self, x): # リストのx番目の値return self.dat[x + self.N2]def update(self, x, y): # index(x)をyに変更i = x + self.N2self.dat[i] = ywhile i > 0: # 親の値を変更i >>= 1self.dat[i] = self.func(self.dat[i << 1], self.dat[i << 1 | 1])returndef query(self, L, R): # [L,R)の区間取得L += self.N2R += self.N2vL = self.defaultvR = self.defaultwhile L < R:if L & 1:vL = self.func(vL, self.dat[L])L += 1if R & 1:R -= 1vR = self.func(self.dat[R], vR)L >>= 1R >>= 1return self.func(vL, vR)class integerlib():def __init__(self):passdef primeset(self,N): #N以下の素数をsetで求める.エラトステネスの篩O(√Nlog(N))lsx = [1]*(N+1)for i in range(2,int(-(-N**0.5//1))+1):if lsx[i] == 1:for j in range(i,N//i+1):lsx[j*i] = 0setprime = set()for i in range(2,N+1):if lsx[i] == 1:setprime.add(i)return setprimedef defprime(self,N):#素数かどうかの判定、エラトステネスの篩O(√Nlog(N))return N in self.primeset(N)def gcd(self,ls):#最大公約数ls = list(ls)ans = 0for i in ls:ans = math.gcd(ans,i)return ansdef lmc(self,ls):#最小公倍数ls = list(ls)ans = self.gcd(ls)for i in ls:ans = self.lmcsub(ans,i)return ansdef lmcsub(self,a,b):gcd = math.gcd(a,b)lmc = (a*b)//gcdreturn lmcdef factorization(self,N):#素因数分解√Narr = []temp = Nfor i in range(2, int(-(-N**0.5//1))+1):if temp%i==0:cnt=0while temp%i==0:cnt+=1temp //= iarr.append([i, cnt])if temp!=1:arr.append([temp, 1])if arr==[]:arr.append([N, 1])return arr #[素因数、個数]def factorizationset(self,N):#素因数分解√N,含まれている素因数の種類if N == 1:return set()ls = self.factorization(N)setf = set()for j in ls:setf.add(j[0])return setfdef divisorsnum(self,N):#約数の個数ls = []for i in self.factorization(N):ls.append(i[1])d = 1for i in ls:d *= i+1return ddef Eulerfunc(self,N):#オイラー関数正の整数Nが与えられる。1,2,…,Nのうち、Nと互いに素であるものの個数を求めよ。ls = list(self.factorizationset(N))ls2 = [N]for i in ls:ls2.append(ls2[-1]-ls2[-1]//i)return ls2[-1]def make_divisors(self,N):#約数列挙O(√N)lower_divisors , upper_divisors = [], []i = 1while i*i <= N:if N % i == 0:lower_divisors.append(i)if i != N // i:upper_divisors.append(N//i)i += 1return lower_divisors + upper_divisors[::-1]def invmod(self,a,mod):#mod逆元a %= modif a == 0:return 0if a == 1:return 1return (-self.invmod(mod % a, mod) * (mod // a)) % moddef cmbmod(self,n, r, mod):#nCr % modinv = [0,1]for i in range(2, n + 1):inv.append((-inv[mod % i] * (mod // i)) % mod)cmd = 1for i in range(1,min(r,n-r)+1):cmd = (cmd*(n-i+1)*inv[i])%modreturn cmddef permmod(self,n, r, mod):#nPr % modperm = 1for i in range(n,r-1,-1):perm = (perm*i)%modreturn permdef modPow(self,a,n,mod):#繰り返し二乗法 a**n % modif n==0:return 1if n==1:return a%modif n % 2 == 1:return (a*self.modPow(a,n-1,mod)) % modt = self.modPow(a,n//2,mod)return (t*t)%moddef invmodls(self,n,mod):#nまでのinvmodinv = [0,1]for i in range(2, n + 1):inv.append((-inv[mod % i] * (mod // i)) % mod)return invdef factorization_all_n(self,n):#n以下の自然数すべてをを素因数分解lspn = [[] for i in range(n+1)]lsnum = [i for i in range(n+1)]lsp = list(self.primeset(n))lsp.sort()for p in lsp:for j in range(1,n//p+1):cnt = 0while lsnum[p*j]%p==0:lsnum[p*j] //= pcnt += 1lspn[j*p].append((p,cnt))return lspndef cmbmodls(self,n,mod):#二項係数逆元使えないverlsans = [1]lsp = list(self.primeset(n))lsp.sort()invp = [0]*(n+1)lspmod = []for i in range(len(lsp)):invp[lsp[i]] =ilspmod.append(lsp[i]%mod)lsX = [0]*(len(lsp))SG = segki_pro_mod(len(lsp),[1]*len(lsp),mod)lspn = self.factorization_all_n(n)for i in range(1,n+1):l = n-i+1r = ichange = set()for p,cnt in lspn[l]:lsX[invp[p]] += cntchange.add(invp[p])for p,cnt in lspn[r]:lsX[invp[p]] -= cntchange.add(invp[p])changels = list(change)for j in changels:SG.update(j,self.modPow(lsp[j],lsX[j],mod))lsans.append(SG.dat[1])return lsansN = int(input())M = int(input())rm = (N%(M*1000))//1000mod = 10**9IT = integerlib()ls = IT.cmbmodls(M,mod)print(ls[rm])