結果

問題 No.1629 Sorting Integers (SUM of M)
ユーザー ChanyuhChanyuh
提出日時 2021-07-30 22:10:31
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 79 ms / 2,000 ms
コード長 4,685 bytes
コンパイル時間 1,429 ms
コンパイル使用メモリ 130,716 KB
実行使用メモリ 14,976 KB
最終ジャッジ日時 2024-09-16 00:28:38
合計ジャッジ時間 3,113 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 13 ms
14,960 KB
testcase_01 AC 13 ms
14,808 KB
testcase_02 AC 13 ms
14,924 KB
testcase_03 AC 14 ms
14,888 KB
testcase_04 AC 17 ms
14,848 KB
testcase_05 AC 14 ms
14,776 KB
testcase_06 AC 14 ms
14,976 KB
testcase_07 AC 31 ms
14,920 KB
testcase_08 AC 24 ms
14,976 KB
testcase_09 AC 32 ms
14,976 KB
testcase_10 AC 25 ms
14,848 KB
testcase_11 AC 23 ms
14,948 KB
testcase_12 AC 44 ms
14,976 KB
testcase_13 AC 47 ms
14,812 KB
testcase_14 AC 35 ms
14,976 KB
testcase_15 AC 48 ms
14,876 KB
testcase_16 AC 48 ms
14,976 KB
testcase_17 AC 79 ms
14,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<array>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
#include<cassert>
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};
template<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}

template<int mod>
struct ModInt {
    long long x;
    static constexpr int MOD = mod;
 
    ModInt() : x(0) {}
    ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    explicit operator int() const {return x;}
 
    ModInt &operator+=(const ModInt &p) {
        if((x += p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator-=(const ModInt &p) {
        if((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator*=(const ModInt &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }
    ModInt &operator/=(const ModInt &p) {
        *this *= p.inverse();
        return *this;
    }
 
    ModInt operator-() const { return ModInt(-x); }
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    ModInt operator%(const ModInt &p) const { return ModInt(0); }         
 
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
 
    ModInt inverse() const{
        int a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
            t = a / b;
            a -= t * b;
            swap(a, b);
            u -= t * v;
            swap(u, v);
        }
        return ModInt(u);
    }

    ModInt power(long long n) const {
        ModInt ret(1), mul(x);
        while(n > 0) {
            if(n & 1)
            ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    ModInt power(const ModInt p) const{
        return ((ModInt)x).power(p.x);
    }

    friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
        return os << p.x;
    }
    friend istream &operator>>(istream &is, ModInt<mod> &a) {
        long long x;
        is >> x;
        a = ModInt<mod>(x);
        return (is);
    }
};

using modint = ModInt<mod>;

struct ModFac{
  public:
    vector<modint> f,i_f;
    int n;

    ModFac(int n_){
      n=n_;
      f.resize(n+1,1);
      i_f.resize(n+1,1);
      for(int i=0;i<n;i++){
        f[i+1]=f[i]*(modint)(i+1);
      }
      i_f[n]=f[n].power(mod-2);
      for(int i=n-1;i>=0;i--){
        i_f[i]=i_f[i+1]*(modint)(i+1);
      }
    }
    ModFac(modint n_){
      n=(int)n_;
      f.resize(n+1,1);
      i_f.resize(n+1,1);
      for(int i=0;i<n;i++){
        f[i+1]=f[i]*(modint)(i+1);
      }
      i_f[n]=f[n].power(mod-2);
      for(int i=n-1;i>=0;i--){
        i_f[i]=i_f[i+1]*(modint)(i+1);
      }
    }
    
    modint factorial(int x){
      //cout << f.size() << endl;
      return f[x];
    }
        
    modint inv_factorial(int x){
      return i_f[x];
    }
    
    modint comb(int m,int k){
      if (m<0 or k<0) return 0;
      if (m<k) return 0;
      return f[m]*i_f[k]*i_f[m-k];
    }
};


int n;
int c[10];
modint po10[500010];
ModFac MF(500010);

void solve(){
    cin >> n;
    Rep(i,1,10) cin >> c[i];
    po10[0]=1;
    rep(i,n){
        po10[i+1]=po10[i]*(modint)10;
    }
    modint ans=0;
    Rep(i,1,10){
        if(c[i]==0) continue;
        rep(j,n){
            modint res=po10[j]*MF.factorial(n-1)*(modint)i;
            Rep(k,1,10){
                if(k==i) res*=MF.inv_factorial(c[k]-1);
                else res*=MF.inv_factorial(c[k]);
            }
            //cout << i << " " << j << " " << res << endl;
            ans+=res;
        }
    }
    cout << ans << endl;
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << fixed << setprecision(50);
    solve();
}
0