結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー | legosuke |
提出日時 | 2021-08-03 13:54:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 7 ms / 2,000 ms |
コード長 | 1,543 bytes |
コンパイル時間 | 2,172 ms |
コンパイル使用メモリ | 204,940 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 14:56:15 |
合計ジャッジ時間 | 3,056 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 7 ms
5,376 KB |
testcase_03 | AC | 7 ms
5,376 KB |
testcase_04 | AC | 7 ms
5,376 KB |
testcase_05 | AC | 7 ms
5,376 KB |
testcase_06 | AC | 6 ms
5,376 KB |
testcase_07 | AC | 6 ms
5,376 KB |
testcase_08 | AC | 7 ms
5,376 KB |
testcase_09 | AC | 7 ms
5,376 KB |
testcase_10 | AC | 6 ms
5,376 KB |
testcase_11 | AC | 7 ms
5,376 KB |
testcase_12 | AC | 7 ms
5,376 KB |
testcase_13 | AC | 7 ms
5,376 KB |
testcase_14 | AC | 7 ms
5,376 KB |
testcase_15 | AC | 6 ms
5,376 KB |
testcase_16 | AC | 6 ms
5,376 KB |
testcase_17 | AC | 6 ms
5,376 KB |
testcase_18 | AC | 7 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; int lagrange_interpolating_polynomial(vector<int64_t> xs, vector<int64_t> ys, int64_t x, int MOD) { auto mod = [&](auto n) { return (n % MOD + MOD) % MOD; }; transform(begin(xs), end(xs), begin(xs), mod); transform(begin(ys), end(ys), begin(ys), mod); x = mod(x); int n = size(xs); vector<int64_t> inv(n + 1, 1), L(n + 1, 1), R(n + 1, 1); for (int i = 1; i <= n; ++i) { if (i > 1) inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; L[i] = L[i - 1] * ((x + MOD - xs[i - 1]) % MOD) % MOD * inv[i] % MOD; R[i] = R[i - 1] * ((x + MOD - xs[n - i]) % MOD) % MOD * inv[i] % MOD; } int ans = 0; for (int i = 0; i < n; ++i) { auto P = ((n - i - 1) & 1 ? MOD - 1 : 1) * (L[i] * R[n - i - 1] % MOD) % MOD; ans = (ans + ys[i] * P % MOD) % MOD; } return ans; } int64_t mod_pow(int64_t x, int64_t n, int MOD) { int64_t res = 1; while (n > 0) { if (n & 1) (res *= x) %= MOD; (x *= x) %= MOD; n >>= 1; } return res; } int faulhaber_formula(int64_t n, int k, int MOD) { vector<int64_t> xs(k + 2), ys(k + 2); for (int i = 0; i < k + 2; ++i) { xs[i] = (i + 1) % MOD; ys[i] = mod_pow(i + 1, k, MOD); if (i) (ys[i] += ys[i - 1]) %= MOD; } return lagrange_interpolating_polynomial(xs, ys, n, MOD); } int main() { long n, k; cin >> n >> k; const int MOD = 1'000'000'007; cout << faulhaber_formula(n, k, MOD) << endl; return 0; }