結果
問題 | No.1629 Sorting Integers (SUM of M) |
ユーザー | 👑 Kazun |
提出日時 | 2021-08-05 04:25:41 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 127 ms / 2,000 ms |
コード長 | 5,565 bytes |
コンパイル時間 | 163 ms |
コンパイル使用メモリ | 82,560 KB |
実行使用メモリ | 116,352 KB |
最終ジャッジ日時 | 2024-09-16 15:14:08 |
合計ジャッジ時間 | 2,366 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
53,632 KB |
testcase_01 | AC | 40 ms
54,016 KB |
testcase_02 | AC | 40 ms
53,376 KB |
testcase_03 | AC | 40 ms
53,504 KB |
testcase_04 | AC | 86 ms
90,112 KB |
testcase_05 | AC | 61 ms
68,480 KB |
testcase_06 | AC | 61 ms
70,272 KB |
testcase_07 | AC | 96 ms
91,136 KB |
testcase_08 | AC | 88 ms
90,716 KB |
testcase_09 | AC | 90 ms
90,624 KB |
testcase_10 | AC | 88 ms
90,112 KB |
testcase_11 | AC | 83 ms
88,064 KB |
testcase_12 | AC | 87 ms
90,240 KB |
testcase_13 | AC | 90 ms
91,124 KB |
testcase_14 | AC | 86 ms
89,600 KB |
testcase_15 | AC | 91 ms
90,880 KB |
testcase_16 | AC | 89 ms
90,936 KB |
testcase_17 | AC | 127 ms
116,352 KB |
ソースコード
from math import gcd class Modulo_Error(Exception): pass class Modulo(): __slots__=["a","n"] def __init__(self,a,n): self.a=a%n self.n=n def __str__(self): return "{} (mod {})".format(self.a,self.n) def __repr__(self): return self.__str__() #+,- def __pos__(self): return self def __neg__(self): return Modulo(-self.a,self.n) #等号,不等号 def __eq__(self,other): if isinstance(other,Modulo): return (self.a==other.a) and (self.n==other.n) elif isinstance(other,int): return (self-other).a==0 def __neq__(self,other): return not(self==other) def __le__(self,other): a,p=self.a,self.n b,q=other.a,other.n return (a-b)%q==0 and p%q==0 def __ge__(self,other): return other<=self def __lt__(self,other): return (self<=other) and (self!=other) def __gt__(self,other): return (self>=other) and (self!=other) def __contains__(self,val): return val%self.n==self.a #加法 def __add__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a+other.a,self.n) elif isinstance(other,int): return Modulo(self.a+other,self.n) def __radd__(self,other): if isinstance(other,int): return Modulo(self.a+other,self.n) def __iadd__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") self.a+=other.a if self.a>=self.n: self.a-=self.n elif isinstance(other,int): self.a+=other if self.a>=self.n: self.a-=self.n return self #減法 def __sub__(self,other): return self+(-other) def __rsub__(self,other): if isinstance(other,int): return -self+other def __isub__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") self.a-=other.a if self.a<0: self.a+=self.n elif isinstance(other,int): self.a-=other if self.a<0: self.a+=self.n return self #乗法 def __mul__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a*other.a,self.n) elif isinstance(other,int): return Modulo(self.a*other,self.n) def __rmul__(self,other): if isinstance(other,int): return Modulo(self.a*other,self.n) def __imul__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") self.a*=other.a elif isinstance(other,int): self.a*=other self.a%=self.n return self #Modulo逆数 def inverse(self): return self.Modulo_Inverse() def Modulo_Inverse(self): s,t=1,0 a,b=self.a,self.n while b: q,a,b=a//b,b,a%b s,t=t,s-q*t if a!=1: raise Modulo_Error("{}の逆数が存在しません".format(self)) else: return Modulo(s,self.n) #除法 def __truediv__(self,other): return self*(other.Modulo_Inverse()) def __rtruediv__(self,other): return other*(self.Modulo_Inverse()) #累乗 def __pow__(self,other): if isinstance(other,int): u=abs(other) r=Modulo(pow(self.a,u,self.n),self.n) if other>=0: return r else: return r.Modulo_Inverse() else: b,n=other.a,other.n if pow(self.a,n,self.n)!=1: raise Modulo_Error("矛盾なく定義できません.") else: return self**b def Factor_Modulo(N,M,Mode=0): """ Mode=0のとき:N! (mod M) を求める. Mode=1のとき:k! (mod M) (k=0,1,...,N) のリストも出力する. [計算量] O(N) """ if Mode==0: X=Modulo(1,M) for k in range(1,N+1): X*=k return X else: L=[Modulo(1,M)]*(N+1) for k in range(1,N+1): L[k]=k*L[k-1] return L def Factor_Modulo_with_Inverse(N,M): """ k=0,1,...,N に対する k! (mod M) と (k!)^(-1) (mod M) のリストを出力する. [入力] N,M:整数 M>0 [出力] 長さ N+1 のリストのタプル (F,G):F[k]=k! (mod M), G[k]=(k!)^(-1) (mod M) [計算量] O(N) """ assert M>0 F=Factor_Modulo(N,M,Mode=1) G=[0]*(N+1) G[-1]=F[-1].inverse() for k in range(N,0,-1): G[k-1]=k*G[k] return F,G #================================================== N=int(input()) C=[0]+list(map(int,input().split())) Mod=10**9+7 F,G=Factor_Modulo_with_Inverse(N+100,Mod) T=[Modulo(0,Mod) for _ in range(10)] for i in range(1,10): if C[i]: T[i]=Modulo(F[N-1].a,Mod) for j in range(1,10): if i==j: T[i]*=G[C[j]-1] else: T[i]*=G[C[j]] else: T[i]=Modulo(0,Mod) Y=Modulo(0,Mod) L=Modulo(1,Mod) for _ in range(N): Y+=L L*=10 X=Modulo(0,Mod) for i in range(1,10): X+=Y*T[i]*i print(X.a)