結果
| 問題 |
No.1638 Robot Maze
|
| コンテスト | |
| ユーザー |
yuruhiya
|
| 提出日時 | 2021-08-06 21:31:19 |
| 言語 | Crystal (1.14.0) |
| 結果 |
AC
|
| 実行時間 | 8 ms / 2,000 ms |
| コード長 | 22,491 bytes |
| コンパイル時間 | 14,186 ms |
| コンパイル使用メモリ | 296,860 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-17 01:22:47 |
| 合計ジャッジ時間 | 15,764 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 49 |
ソースコード
# require "/template"
# require "./scanner"
# ### Specifications
#
# ```plain
# Inside input macro | Expanded code
# ----------------------------------------------+---------------------------------------
# Uppercase string: Int32, Int64, Float64, etc. | {}.new(Scanner.s)
# s | Scanner.s
# c | Scanner.c
# Other lowercase string: i, i64, f, etc. | Scanner.s.to_{}
# operator[]: type[size] | Array.new(input(size)) { input(type) }
# Tuple literal: {t1, t2, t3} | {input(t1), input(t2), input(t3)}
# Array literal: [t1, t2, t3] | [input(t1), input(t2), input(t3)]
# Range literal: t1..t2 | input(t1)..input(t2)
# If: cond ? t1 : t2 | cond ? input(t1) : input(t2)
# Assign: target = value | target = input(value)
# ```
#
# ### Examples
#
# Input:
# ```plain
# 5 3
# foo bar
# 1 2 3 4 5
# ```
# ```
# n, m = input(Int32, Int64) # => {5, 10i64}
# input(String, Char[m]) # => {"foo", ['b', 'a', 'r']}
# input(Int32[n]) # => [1, 2, 3, 4, 5]
# ```
# ```
# n, m = input(i, i64) # => {5, 10i64}
# input(s, c[m]) # => {"foo", ['b', 'a', 'r']}
# input(i[n]) # => [1, 2, 3, 4, 5]
# ```
#
# Input:
# ```plain
# 2 3
# 1 2 3
# 4 5 6
# ```
#
# ```
# h, w = input(i, i) # => {2, 3}
# input(i[h, w]) # => [[1, 2, 3], [4, 5, 6]]
# ```
# ```
# input(i[i][i]) # => [[1, 2, 3], [4, 5, 6]]
# ```
#
# Input:
# ```plain
# 5 3
# 3 1 4 2 5
# 1 2
# 2 3
# 3 1
# ```
# ```
# n, m = input(i, i) # => {5, 3}
# input(i.pred[n]) # => [2, 0, 3, 1, 4]
# input({i - 1, i - 1}[m]) # => [{0, 1}, {1, 2}, {2, 0}]
# ```
#
# Input:
# ```plain
# 3
# 1 2
# 2 2
# 3 2
# ```
# ```
# input({tmp = i, tmp == 1 ? i : i.pred}[i]) # => [{1, 2}, {2, 1}, {3, 1}]
# ```
#
# Input:
# ```plain
# 3
# 1 2
# 2 3
# 3 1
# ```
# ```
# n = input(i)
# input_column({Int32, Int32}, n) # => {[1, 2, 3], [2, 3, 1]}
# ```
class Scanner
private def self.skip_to_not_space
peek = STDIN.peek
not_space = peek.index { |x| x != 32 && x != 10 } || peek.size
STDIN.skip(not_space)
end
def self.c
skip_to_not_space
STDIN.read_char.not_nil!
end
def self.s
skip_to_not_space
peek = STDIN.peek
if index = peek.index { |x| x == 32 || x == 10 }
STDIN.skip(index + 1)
return String.new(peek[0, index])
end
String.build do |buffer|
loop do
buffer.write peek
STDIN.skip(peek.size)
peek = STDIN.peek
break if peek.empty?
if index = peek.index { |x| x == 32 || x == 10 }
buffer.write peek[0, index]
STDIN.skip(index)
break
end
end
end
end
end
macro internal_input(type, else_ast)
{% if Scanner.class.has_method?(type.id) %}
Scanner.{{type.id}}
{% elsif type.stringify == "String" %}
Scanner.s
{% elsif type.stringify == "Char" %}
Scanner.c
{% elsif type.stringify =~ /[A-Z][a-z0-9_]*/ %}
{{type.id}}.new(Scanner.s)
{% elsif String.has_method?("to_#{type}".id) %}
Scanner.s.to_{{type.id}}
{% else %}
{{else_ast}}
{% end %}
end
macro internal_input_array(type, args)
{% for i in 0...args.size %}
%size{i} = input({{args[i]}})
{% end %}
{% begin %}
{% for i in 0...args.size %} Array.new(%size{i}) { {% end %}
input({{type.id}})
{% for i in 0...args.size %} } {% end %}
{% end %}
end
macro input(type)
{% if type.is_a?(Call) %}
{% if type.receiver.is_a?(Nop) %}
internal_input(
{{type.name}}, {{type.name}}(
{% for argument in type.args %} input({{argument}}), {% end %}
)
)
{% elsif type.name.stringify == "[]" %}
internal_input_array({{type.receiver}}, {{type.args}})
{% else %}
input({{type.receiver}}).{{type.name.id}}(
{% for argument in type.args %} input({{argument}}), {% end %}
) {{type.block}}
{% end %}
{% elsif type.is_a?(TupleLiteral) %}
{ {% for i in 0...type.size %} input({{type[i]}}), {% end %} }
{% elsif type.is_a?(ArrayLiteral) %}
[ {% for i in 0...type.size %} input({{type[i]}}), {% end %} ]
{% elsif type.is_a?(RangeLiteral) %}
Range.new(input({{type.begin}}), input({{type.end}}), {{type.excludes_end?}})
{% elsif type.is_a?(If) %}
{{type.cond}} ? input({{type.then}}) : input({{type.else}})
{% elsif type.is_a?(Assign) %}
{{type.target}} = input({{type.value}})
{% else %}
internal_input({{type.id}}, {{type.id}})
{% end %}
end
macro input(*types)
{ {% for type in types %} input({{type}}), {% end %} }
end
macro input_column(types, size)
{% for type, i in types %}
%array{i} = Array({{type}}).new({{size}})
{% end %}
{{size}}.times do
{% for type, i in types %}
%array{i} << input({{type}})
{% end %}
end
{ {% for type, i in types %} %array{i}, {% end %} }
end
# require "./tuple/times"
struct Tuple
def times(&block) : Nil
{% begin %}
{% for i in 0...@type.size %}
{% if @type[i].has_method?(:each) %}
self[{{i}}].each do |i{{i}}|
{% else %}
self[{{i}}].times do |i{{i}}|
{% end %}
{% end %}
yield({% for i in 0...@type.size %} i{{i}}, {% end %})
{% for i in 0...@type.size %} end {% end %}
{% end %}
end
private class TimesIterator(T)
include Iterator(T)
def initialize(@n : T)
tuple = {% begin %}
{ {% for i in 0...T.size %} T[{{i}}].zero, {% end %} }
{% end %}
@index = tuple.as(T)
@first = true
end
def next
if @first
@first = false
return @index
end
{% begin %}
{%
type = @type.type_vars[0]
size = type.size
%}
{% for i in 1..size %}
if @index[{{size - i}}] < @n[{{size - i}}] - 1
@index = {
{% for j in 0...size %}
{% if j < size - i %}
@index[{{j}}],
{% elsif j == size - i %}
@index[{{j}}] + 1,
{% else %}
{{type[j]}}.zero,
{% end %}
{% end %}
}
return @index
end
{% end %}
stop
{% end %}
end
end
def times
TimesIterator(self).new(self)
end
end
# require "./comparable/min_max"
module Comparable(T)
def min(x : T)
self > x ? x : self
end
def max(x : T)
self < x ? x : self
end
end
# require "./array/new"
class Array
def self.new(sizes : Tuple(*T), initial_value) forall T
{% begin %}
{% for i in 0...T.size %} Array.new(sizes[{{i}}]) { {% end %}
initial_value
{% for i in 0...T.size %} } {% end %}
{% end %}
end
def self.new(sizes : Tuple(*T), &block) forall T
{% begin %}
{% for i in 0...T.size %} Array.new(sizes[{{i}}]) { |%i{i}| {% end %}
yield({% for i in 0...T.size %} %i{i}, {% end %})
{% for i in 0...T.size %} } {% end %}
{% end %}
end
end
# require "./array/change"
class Array(T)
def chmin(i : Int, value : T)
(self[i] > value).tap do |f|
self[i] = value if f
end
end
protected def chmin(i : Int, *indexes, value)
self[i].chmin(*indexes, value: value)
end
def chmin(indexes : Tuple, value)
chmin(*indexes, value: value)
end
def chmax(i : Int, value : T)
(self[i] < value).tap do |f|
self[i] = value if f
end
end
protected def chmax(i : Int, *indexes, value)
self[i].chmax(*indexes, value: value)
end
def chmax(indexes : Tuple, value)
chmax(*indexes, value: value)
end
end
# require "/point"
struct Point
include Comparable(Point)
extend Indexable(Point)
property y : Int32, x : Int32
Direction4 = [Point.up, Point.left, Point.down, Point.right]
Direction8 = Direction4 + [Point.ul, Point.ur, Point.dl, Point.dr]
class_getter! height : Int32, width : Int32
def self.set_range(height : Int32, width : Int32)
raise ArgumentError.new unless 0 < height && 0 < width
@@height, @@width = height, width
end
def self.size
height * width
end
def self.unsafe_fetch(index : Int)
Point.new(index // Point.width, index % Point.width)
end
def initialize
@y, @x = 0, 0
end
def initialize(@y : Int32, @x : Int32)
end
def initialize(i : Int32)
raise ArgumentError.new unless 0 <= i && i < Point.size
@y, @x = i // Point.width, i % Point.width
end
def self.from(array : Array(Int32)) : self
raise ArgumentError.new unless array.size == 2
Point.new(array.unsafe_fetch(0), array.unsafe_fetch(1))
end
def self.[](y : Int32, x : Int32) : self
Point.new(y, x)
end
private macro define_direction(name, dy, dx)
def self.{{name}}
Point.new({{dy}}, {{dx}})
end
def {{name}}
Point.new(y + {{dy}}, x + {{dx}})
end
end
define_direction(zero, 0, 0)
define_direction(up, -1, 0)
define_direction(left, 0, -1)
define_direction(down, 1, 0)
define_direction(right, 0, 1)
define_direction(ul, -1, -1)
define_direction(ur, -1, 1)
define_direction(dl, 1, -1)
define_direction(dr, 1, 1)
{% for op in %w[+ - * // %] %}
def {{op.id}}(other : Point)
Point.new(y {{op.id}} other.y, x {{op.id}} other.x)
end
def {{op.id}}(other : Int32)
Point.new(y {{op.id}} other, x {{op.id}} other)
end
{% end %}
def xy
Point.new(x, y)
end
def yx
self
end
def ==(other : Point)
x == other.x && y == other.y
end
def <=>(other : Point)
to_i <=> other.to_i
end
def [](i : Int32)
return y if i == 0
return x if i == 1
raise IndexError.new
end
def succ
raise IndexError.new unless in_range? && self != Point.last
if x < Point.width - 1
Point.new(y, x + 1)
else
Point.new(y + 1, 0)
end
end
def pred
raise IndexError.new unless in_range? && self != Point.first
if x > 0
Point.new(y, x - 1)
else
Point.new(y - 1, Point.width - 1)
end
end
def in_range?
(0...Point.height).includes?(y) && (0...Point.width).includes?(x)
end
def to_i : Int32
raise IndexError.new unless in_range?
y * Point.width + x
end
def distance_square(other : Point)
(y - other.y) ** 2 + (x - other.x) ** 2
end
def distance(other : Point)
Math.sqrt(distance_square(other))
end
def manhattan(other : Point)
(y - other.y).abs + (x - other.x).abs
end
def chebyshev(other : Point)
Math.max((y - other.y).abs, (x - other.x).abs)
end
{% for i in [4, 8] %}
def adjacent{{i}}(&block) : Nil
Direction{{i}}.each do |d|
yield self + d
end
end
def adjacent{{i}}
Direction{{i}}.each.map { |p| self + p }
end
def adj{{i}}_in_range(&block) : Nil
Direction{{i}}.each do |d|
point = self + d
yield point if point.in_range?
end
end
def adj{{i}}_in_range
adjacent{{i}}.select(&.in_range?)
end
{% end %}
def to_s(io : IO) : Nil
io << '(' << y << ", " << x << ')'
end
def inspect(io : IO) : Nil
to_s(io)
end
def to_direction_char?(lrud = "LRUD") : Char?
if y == 0 && x != 0
x < 0 ? lrud[0] : lrud[1]
elsif x == 0 && y != 0
y < 0 ? lrud[2] : lrud[3]
end
end
def self.to_direction?(c : Char, lrud = "LRUD")
raise ArgumentError.new unless lrud.size == 4
lrud.index(c).try { |i| {left, right, up, down}[i] }
end
def self.to_direction?(s : String, lrud = "LRUD")
case s.size
when 1
to_direction?(s[0], lrud)
when 2
p1 = to_direction?(s[0], lrud) || return nil
p2 = to_direction?(s[1], lrud) || return nil
return nil unless p1.x ^ p2.x != 0 && p1.y ^ p2.y != 0
p1 + p2
end
end
end
module Indexable(T)
private def check_index_out_of_bounds(point : Point)
check_index_out_of_bounds(point) { raise IndexError.new }
end
private def check_index_out_of_bounds(point : Point)
if 0 <= point.y < size && 0 <= point.x < unsafe_fetch(point.y).size
point
else
yield
end
end
def fetch(point : Point)
point = check_index_out_of_bounds(point) do
return yield point
end
unsafe_fetch(point.y)[point.x]
end
def [](point : Point)
fetch(point) { raise IndexError.new }
end
def []?(point : Point)
fetch(point, nil)
end
end
class Array(T)
def []=(point : Point, value)
index = check_index_out_of_bounds point
@buffer[index.y][index.x] = value
end
end
# require "/graph/dijkstra"
# require "../../atcoder/src/PriorityQueue"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module AtCoder
# Implements standard priority queue like [std::priority_queue](https://en.cppreference.com/w/cpp/container/priority_queue).
#
# ```
# q = AtCoder::PriorityQueue(Int64).new
# q << 1_i64
# q << 3_i64
# q << 2_i64
# q.pop # => 3
# q.pop # => 2
# q.pop # => 1
# ```
class PriorityQueue(T)
getter heap : Array(T)
def initialize
initialize { |a, b| a <= b }
end
# Initializes queue with the custom comperator.
#
# If the second argument `b` should be popped earlier than
# the first argument `a`, return `true`. Else, return `false`.
#
# ```
# q = AtCoder::PriorityQueue(Int64).new { |a, b| a >= b }
# q << 1_i64
# q << 3_i64
# q << 2_i64
# q.pop # => 1
# q.pop # => 2
# q.pop # => 3
# ```
def initialize(&block : T, T -> Bool)
@heap = Array(T).new
@compare_proc = block
end
# Pushes value into the queue.
def push(v : T)
@heap << v
index = @heap.size - 1
while index != 0
parent = (index - 1) // 2
if @compare_proc.call(@heap[index], @heap[parent])
break
end
@heap[parent], @heap[index] = @heap[index], @heap[parent]
index = parent
end
end
# Alias of `push`
def <<(v : T)
push(v)
end
# Pops value from the queue.
def pop
if @heap.size == 0
return nil
end
if @heap.size == 1
return @heap.pop
end
ret = @heap.first
@heap[0] = @heap.pop
index = 0
while index * 2 + 1 < @heap.size
child = if index * 2 + 2 < @heap.size && !@compare_proc.call(@heap[index * 2 + 2], @heap[index * 2 + 1])
index * 2 + 2
else
index * 2 + 1
end
if @compare_proc.call(@heap[child], @heap[index])
break
end
@heap[child], @heap[index] = @heap[index], @heap[child]
index = child
end
ret
end
# Returns `true` if the queue is empty.
delegate :empty?, to: @heap
# Returns size of the queue.
delegate :size, to: @heap
end
end
# require "../graph"
# require "./graph/edge"
struct WeightedEdge(T)
include Comparable(WeightedEdge(T))
property to : Int32, cost : T
def initialize(@to, @cost : T)
end
def <=>(other : WeightedEdge(T))
{cost, to} <=> {other.cost, other.to}
end
def to_s(io) : Nil
io << '(' << to << ", " << cost << ')'
end
def inspect(io) : Nil
io << "->#{to}(#{cost})"
end
end
struct WeightedEdge2(T)
include Comparable(WeightedEdge2(T))
property from : Int32, to : Int32, cost : T
def initialize(@from, @to, @cost : T)
end
def initialize(@from, edge : WeightedEdge(T))
@to, @cost = edge.to, edge.cost
end
def <=>(other : WeightedEdge2(T))
{cost, from, to} <=> {other.cost, other.from, other.to}
end
def reverse
WeightedEdge2(T).new(to, from, cost)
end
def sort
WeightedEdge2(T).new(*{to, from}.minmax, cost)
end
def to_s(io) : Nil
io << '(' << from << ", " << to << ", " << cost << ')'
end
def inspect(io) : Nil
io << from << "->" << to << '(' << cost << ')'
end
end
struct UnweightedEdge
property to : Int32
def initialize(@to)
end
def cost
1
end
def to_s(io) : Nil
io << to
end
def inspect(io) : Nil
io << "->" << to
end
end
struct UnweightedEdge2
property from : Int32, to : Int32
def initialize(@from, @to)
end
def initialize(@from, edge : UnweightedEdge)
@to = edge.to
end
def cost
1
end
def reverse
UnweightedEdge2.new(to, from)
end
def sort
UnweightedEdge2.new(*{to, from}.minmax)
end
def to_s(io) : Nil
io << '(' << from << ", " << to << ')'
end
def inspect(io) : Nil
io << from << "->" << to
end
end
module Graph(Edge, Edge2)
include Enumerable(Edge2)
getter graph : Array(Array(Edge))
def initialize(size : Int)
@graph = Array(Array(Edge)).new(size) { [] of Edge }
end
def initialize(size : Int, edges : Enumerable)
initialize(size)
add_edges(edges)
end
# Add *edge*.
abstract def <<(edge : Edge2)
# :ditto:
def <<(edge : Tuple)
self << Edge2.new(*edge)
end
def add_edges(edges : Enumerable)
edges.each { |edge| self << edge }
end
delegate size, to: @graph
delegate :[], to: @graph
# Yields each edge of the graph, ans returns `nil`.
def each(&) : Nil
(0...size).each do |v|
self[v].each do |edge|
yield Edge2.new(v, edge)
end
end
end
def reverse
if self.class.directed?
each_with_object(self.class.new(size)) do |edge, reversed|
reversed << edge.reverse
end
else
dup
end
end
def to_undirected
if self.class.directed?
each_with_object(self.class.new(size)) do |edge, graph|
graph << edge
graph << edge.reverse if self.class.directed?
end
else
dup
end
end
def to_s(io : IO) : Nil
io << '['
join(", ", io) do |edge, io|
edge.inspect io
end
io << ']'
end
def inspect(io : IO) : Nil
to_s(io)
end
end
class DirectedGraph(T)
include Graph(WeightedEdge(T), WeightedEdge2(T))
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable(WeightedEdge2(T)))
super
end
def initialize(size : Int, edges : Enumerable({Int32, Int32, T}))
super
end
def <<(edge : WeightedEdge2(T))
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << WeightedEdge.new(edge.to, edge.cost)
self
end
def self.weighted?
true
end
def self.directed?
true
end
end
class UndirectedGraph(T)
include Graph(WeightedEdge(T), WeightedEdge2(T))
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable(WeightedEdge2(T)))
super
end
def initialize(size : Int, edges : Enumerable({Int32, Int32, T}))
super
end
def <<(edge : WeightedEdge2(T))
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << WeightedEdge.new(edge.to, edge.cost)
@graph[edge.to] << WeightedEdge.new(edge.from, edge.cost)
self
end
def self.weighted?
true
end
def self.directed?
false
end
end
class UnweightedDirectedGraph
include Graph(UnweightedEdge, UnweightedEdge2)
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable)
super
end
def <<(edge : UnweightedEdge2)
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << UnweightedEdge.new(edge.to)
self
end
def self.weighted?
false
end
def self.directed?
true
end
end
class UnweightedUndirectedGraph
include Graph(UnweightedEdge, UnweightedEdge2)
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable)
super
end
def <<(edge : UnweightedEdge2)
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << UnweightedEdge.new(edge.to)
@graph[edge.to] << UnweightedEdge.new(edge.from)
self
end
def each_child(vertex : Int, parent, &block) : Nil
graph[vertex].each do |u|
yield u if u != parent
end
end
def each_child(vertex : Int, parent)
graph[vertex].each.select { |u| u != parent }
end
def self.weighted?
false
end
def self.directed?
false
end
end
module Graph(Edge, Edge2)
# Returns the array of distance of each node from *start* or `nil`.
def dijkstra(start : Int32)
raise ArgumentError.new unless 0 <= start < size
que = AtCoder::PriorityQueue({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 > d2 }
que << {start, typeof(first.cost).zero}
dist = Array(typeof(first.cost)?).new(size, nil)
dist[start] = typeof(first.cost).zero
while vd = que.pop
v, d = vd
next if dist[v].try { |dist_v| dist_v < d }
current_dist = dist[v].not_nil!
graph[v].each do |edge|
next_dist = current_dist + edge.cost
if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist
dist[edge.to] = next_dist
que << {edge.to, next_dist}
end
end
end
dist
end
# Returns the array of distance of each node from *start*.
def dijkstra!(start : Int32)
dijkstra(start).map(&.not_nil!)
end
end
h, w = input(i, i)
u, d, r, l, k, p = input(i64, i64, i64, i64, i64, i64)
start, goal = input({i - 1, i - 1}, {i - 1, i - 1})
start, goal = Point[*start], Point[*goal]
s = input(String[h])
Point.set_range(h, w)
dir_to_cost = {'U' => u, 'D' => d, 'R' => r, 'L' => l}
g = DirectedGraph(Int64).new h * w
Point.each do |point|
next if s[point] == '#'
point.adj4_in_range do |adj|
cost = dir_to_cost[(adj - point).to_direction_char?.not_nil!]
case s[adj]
when '.'
g << {point.to_i, adj.to_i, cost}
when '@'
g << {point.to_i, adj.to_i, cost + p}
end
end
end
puts (g.dijkstra(start.to_i)[goal.to_i] || 10i64**18) <= k ? "Yes" : "No"
yuruhiya