結果

問題 No.732 3PrimeCounting
ユーザー st1vdy
提出日時 2021-08-11 11:22:10
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 101 ms / 3,000 ms
コード長 8,288 bytes
コンパイル時間 2,711 ms
コンパイル使用メモリ 213,776 KB
最終ジャッジ日時 2025-01-23 17:30:24
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 89
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define _SILENCE_CXX17_C_HEADER_DEPRECATION_WARNING
#define _CRT_SECURE_NO_WARNINGS
#include <bits/stdc++.h>
using namespace std;
namespace FFT {
typedef double dbl;
struct num {
dbl x, y;
num() { x = y = 0; }
num(dbl x, dbl y) : x(x), y(y) { }
};
inline num operator+(num a, num b) { return num(a.x + b.x, a.y + b.y); }
inline num operator-(num a, num b) { return num(a.x - b.x, a.y - b.y); }
inline num operator*(num a, num b) { return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); }
inline num conj(num a) { return num(a.x, -a.y); }
int base = 1;
vector<num> roots = { {0, 0}, {1, 0} };
vector<int> rev = { 0, 1 };
const dbl PI = acosl(-1.0);
void ensure_base(int nbase) {
if (nbase <= base) {
return;
}
rev.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
roots.resize(1 << nbase);
while (base < nbase) {
dbl angle = 2 * PI / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++) {
roots[i << 1] = roots[i];
dbl angle_i = angle * (2 * i + 1 - (1 << base));
roots[(i << 1) + 1] = num(cos(angle_i), sin(angle_i));
}
base++;
}
}
void fft(vector<num>& a, int n = -1) {
if (n == -1) {
n = a.size();
}
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for (int k = 1; k < n; k <<= 1) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
num z = a[i + j + k] * roots[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector<num> fa, fb;
vector<int> multiply(vector<int>& a, vector<int>& b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
if (sz > (int)fa.size()) {
fa.resize(sz);
}
for (int i = 0; i < sz; i++) {
int x = (i < (int)a.size() ? a[i] : 0);
int y = (i < (int)b.size() ? b[i] : 0);
fa[i] = num(x, y);
}
fft(fa, sz);
num r(0, -0.25 / (sz >> 1));
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
num z = (fa[j] * fa[j] - conj(fa[i] * fa[i])) * r;
if (i != j) {
fa[j] = (fa[i] * fa[i] - conj(fa[j] * fa[j])) * r;
}
fa[i] = z;
}
for (int i = 0; i < (sz >> 1); i++) {
num A0 = (fa[i] + fa[i + (sz >> 1)]) * num(0.5, 0);
num A1 = (fa[i] - fa[i + (sz >> 1)]) * num(0.5, 0) * roots[(sz >> 1) + i];
fa[i] = A0 + A1 * num(0, 1);
}
fft(fa, sz >> 1);
vector<int> res(need);
for (int i = 0; i < need; i++) {
if (i % 2 == 0) {
res[i] = fa[i >> 1].x + 0.5;
} else {
res[i] = fa[i >> 1].y + 0.5;
}
}
return res;
}
vector<long long> square(const vector<int>& a) {
int need = a.size() + a.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
if ((sz >> 1) > (int)fa.size()) {
fa.resize(sz >> 1);
}
for (int i = 0; i < (sz >> 1); i++) {
int x = (2 * i < (int)a.size() ? a[2 * i] : 0);
int y = (2 * i + 1 < (int)a.size() ? a[2 * i + 1] : 0);
fa[i] = num(x, y);
}
fft(fa, sz >> 1);
num r(1.0 / (sz >> 1), 0.0);
for (int i = 0; i <= (sz >> 2); i++) {
int j = ((sz >> 1) - i) & ((sz >> 1) - 1);
num fe = (fa[i] + conj(fa[j])) * num(0.5, 0);
num fo = (fa[i] - conj(fa[j])) * num(0, -0.5);
num aux = fe * fe + fo * fo * roots[(sz >> 1) + i] * roots[(sz >> 1) + i];
num tmp = fe * fo;
fa[i] = r * (conj(aux) + num(0, 2) * conj(tmp));
fa[j] = r * (aux + num(0, 2) * tmp);
}
fft(fa, sz >> 1);
vector<long long> res(need);
for (int i = 0; i < need; i++) {
if (i % 2 == 0) {
res[i] = fa[i >> 1].x + 0.5;
} else {
res[i] = fa[i >> 1].y + 0.5;
}
}
return res;
}
vector<int> multiply_mod(vector<int>& a, vector<int>& b, int m, int eq = 0) {
int need = a.size() + b.size() - 1;
int nbase = 0;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
if (sz > (int)fa.size()) {
fa.resize(sz);
}
for (int i = 0; i < (int)a.size(); i++) {
int x = (a[i] % m + m) % m;
fa[i] = num(x & ((1 << 15) - 1), x >> 15);
}
fill(fa.begin() + a.size(), fa.begin() + sz, num{ 0, 0 });
fft(fa, sz);
if (sz > (int) fb.size()) {
fb.resize(sz);
}
if (eq) {
copy(fa.begin(), fa.begin() + sz, fb.begin());
} else {
for (int i = 0; i < (int)b.size(); i++) {
int x = (b[i] % m + m) % m;
fb[i] = num(x & ((1 << 15) - 1), x >> 15);
}
fill(fb.begin() + b.size(), fb.begin() + sz, num{ 0, 0 });
fft(fb, sz);
}
dbl ratio = 0.25 / sz;
num r2(0, -1);
num r3(ratio, 0);
num r4(0, -ratio);
num r5(0, 1);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
num a1 = (fa[i] + conj(fa[j]));
num a2 = (fa[i] - conj(fa[j])) * r2;
num b1 = (fb[i] + conj(fb[j])) * r3;
num b2 = (fb[i] - conj(fb[j])) * r4;
if (i != j) {
num c1 = (fa[j] + conj(fa[i]));
num c2 = (fa[j] - conj(fa[i])) * r2;
num d1 = (fb[j] + conj(fb[i])) * r3;
num d2 = (fb[j] - conj(fb[i])) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector<int> res(need);
for (int i = 0; i < need; i++) {
long long aa = fa[i].x + 0.5;
long long bb = fb[i].x + 0.5;
long long cc = fa[i].y + 0.5;
res[i] = (aa + ((bb % m) << 15) + ((cc % m) << 30)) % m;
}
return res;
}
vector<int> square_mod(vector<int>& a, int m) {
return multiply_mod(a, a, m, 1);
}
};
vector<bool> isPrime; // true false
vector<int> prime; //
int sieve(int n) {
isPrime.resize(n + 1, false);
isPrime[0] = isPrime[1] = true;
for (int i = 2; i <= n; i++) {
if (!isPrime[i]) prime.emplace_back(i);
for (int j = 0; j < (int)prime.size() && prime[j] * i <= n; ++j) {
isPrime[prime[j] * i] = true;
if (!(i % prime[j])) break;
}
}
return (int)prime.size();
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int n;
cin >> n;
sieve(3 * n + 1);
vector<int> a(n + 1, 0), b(n + 1, 0), c(2 * n + 1, 0);
for (int i = 2; i <= n; i++) {
if (!isPrime[i]) {
a[i] = b[i] = 1;
c[i * 2] = 1;
}
}
a = FFT::multiply(a, b);
a = FFT::multiply(a, b);
c = FFT::multiply(c, b);
long long res = 0;
for (int i = 2; i <= 3 * n; i++) {
if (!isPrime[i]) {
res += (a[i] - c[i] * 3) / 6;
//cout << (a[i] - c[i] * 3) / 6 << " " << i << "\n";
}
}
cout << res;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0