結果
| 問題 |
No.644 G L C C D M
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-08-11 19:06:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 168 ms / 2,000 ms |
| コード長 | 3,050 bytes |
| コンパイル時間 | 1,855 ms |
| コンパイル使用メモリ | 81,724 KB |
| 実行使用メモリ | 92,032 KB |
| 最終ジャッジ日時 | 2024-09-25 05:28:56 |
| 合計ジャッジ時間 | 6,287 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
class Prime:
def __init__(self,N):
assert N<=10**8
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factorize=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factorize[p]+=1
if N<p*p:
if N!=1:
factorize[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factorize[N]+=1
return factorize
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
A=[1]
for _ in range(e):
A.append(A[-1]*p)
divisors=[i*j for i in divisors for j in A]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
N,M=map(int,readline().split())
cnt=[0]*(N+1)
mod=10**9+7
for i in range(1,N+1):
cnt[i]=(N//i)*(N//i-1)%mod
P=Prime(N)
for p in P.primes:
for i in range(p,N+1,p):
cnt[i//p]-=cnt[i]
cnt[i//p]%=mod
if N<M:
ans=0
else:
ans=cnt[M]
for i in range(1,N-1):
ans*=i
ans%=mod
print(ans)
vwxyz