結果

問題 No.811 約数の個数の最大化
ユーザー stoqstoq
提出日時 2021-08-12 02:34:42
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 149 ms / 2,000 ms
コード長 5,210 bytes
コンパイル時間 4,576 ms
コンパイル使用メモリ 278,200 KB
実行使用メモリ 34,644 KB
最終ジャッジ日時 2024-10-01 05:05:52
合計ジャッジ時間 6,858 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 76 ms
34,508 KB
testcase_01 AC 75 ms
34,456 KB
testcase_02 AC 149 ms
34,624 KB
testcase_03 AC 72 ms
34,464 KB
testcase_04 AC 70 ms
34,576 KB
testcase_05 AC 71 ms
34,488 KB
testcase_06 AC 78 ms
34,492 KB
testcase_07 AC 79 ms
34,452 KB
testcase_08 AC 112 ms
34,428 KB
testcase_09 AC 119 ms
34,564 KB
testcase_10 AC 97 ms
34,456 KB
testcase_11 AC 127 ms
34,452 KB
testcase_12 AC 98 ms
34,512 KB
testcase_13 AC 147 ms
34,596 KB
testcase_14 AC 146 ms
34,644 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 2

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#include <atcoder/all>
using namespace atcoder;

#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif

#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif

using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 0;
#endif
#endif

using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";

struct io_init {
  io_init() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
  fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
  vector<T> val = v;
  sort(all(val)), val.erase(unique(all(val)), val.end());
  for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
  return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
  os << p.first << " " << p.second;
  return os;
}
ostream &operator<<(ostream &os, mint m) {
  os << m.val();
  return os;
}

random_device seed_gen;
mt19937_64 engine(seed_gen());

struct BiCoef {
  vector<mint> fact_, inv_, finv_;
  BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
    fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
    for (int i = 2; i < n; i++) {
      fact_[i] = fact_[i - 1] * i;
      inv_[i] = -inv_[MOD % i] * (MOD / i);
      finv_[i] = finv_[i - 1] * inv_[i];
    }
  }
  mint C(ll n, ll k) const noexcept {
    if (n < k || n < 0 || k < 0) return 0;
    return fact_[n] * finv_[k] * finv_[n - k];
  }
  mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
  mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
  mint Ch1(ll n, ll k) const noexcept {
    if (n < 0 || k < 0) return 0;
    mint res = 0;
    for (int i = 0; i < n; i++)
      res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
    return res;
  }
  mint fact(ll n) const noexcept {
    if (n < 0) return 0;
    return fact_[n];
  }
  mint inv(ll n) const noexcept {
    if (n < 0) return 0;
    return inv_[n];
  }
  mint finv(ll n) const noexcept {
    if (n < 0) return 0;
    return finv_[n];
  }
};

BiCoef bc(2000010);

#pragma endregion

const int MAX_N = 1e6;
ll can_div[MAX_N] = {};

void init_prime() {
  can_div[1] = -1;
  for (ll i = 2; i < MAX_N; i++) {
    if (can_div[i] != 0) continue;
    for (ll j = i + i; j < MAX_N; j += i) can_div[j] = i;
  }
}

struct init_prime_ {
  init_prime_() { init_prime(); };
} init_prime_;

inline bool is_prime(ll n) {
  if (n <= 1) return false;
  return !can_div[n];
}

void factorization(int n, unordered_map<ll, int> &res) {
  if (n <= 1) return;
  if (!can_div[n]) {
    ++res[n];
    return;
  }
  ++res[can_div[n]];
  factorization(n / can_div[n], res);
}

int common(int n, int m) {
  unordered_map<ll, int> A, B;
  factorization(n, A);
  factorization(m, B);
  int sum = 0;
  for (auto [p, e] : A) {
    sum += min(e, B[p]);
  }
  return sum;
}

int divisor(int n) {
  unordered_map<ll, int> mp;
  factorization(n, mp);
  int cnt = 1;
  for (auto [p, e] : mp) cnt *= e + 1;
  return cnt;
}

void solve() {
  int n, k;
  cin >> n >> k;
  pii p{INF, -1};
  for (int i = 1; i < n; i++) {
    if (common(n, i) >= k) {
      chmin(p, pii{-divisor(i), i});
    }
  }
  cout << p.second << "\n";
}

int main() { solve(); }
0