結果
問題 | No.1646 Avoid Palindrome |
ユーザー | tanimani364 |
提出日時 | 2021-08-13 22:23:29 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 4,402 bytes |
コンパイル時間 | 2,202 ms |
コンパイル使用メモリ | 203,324 KB |
実行使用メモリ | 10,496 KB |
最終ジャッジ日時 | 2024-11-08 15:36:24 |
合計ジャッジ時間 | 72,009 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
testcase_32 | TLE | - |
testcase_33 | TLE | - |
testcase_34 | TLE | - |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
testcase_39 | AC | 2 ms
5,248 KB |
testcase_40 | AC | 2 ms
5,248 KB |
testcase_41 | AC | 2 ms
5,248 KB |
testcase_42 | AC | 2 ms
5,248 KB |
testcase_43 | TLE | - |
ソースコード
#include <bits/stdc++.h> //#include<boost/multiprecision/cpp_int.hpp> //#include<boost/multiprecision/cpp_dec_float.hpp> //#include <atcoder/all> using namespace std; #define rep(i, a) for (int i = (int)0; i < (int)a; ++i) #define rrep(i, a) for (int i = (int)a; i > -1; --i) #define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i) #define RREP(i, a, b) for (int i = (int)a; i > b; --i) #define repl(i, a) for (ll i = (ll)0; i < (ll)a; ++i) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define popcount __builtin_popcount #define popcountll __builtin_popcountll #define fi first #define se second using ll = long long; constexpr ll mod = 1e9 + 7; constexpr ll mod_998244353 = 998244353; constexpr ll INF = 1LL << 60; // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") //using lll=boost::multiprecision::cpp_int; // using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<128>>;//仮数部が1024桁 template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } ll mypow(ll x, ll n, const ll &p = -1) { // x^nをmodで割った余り if (p != -1) { x = (x % p + p) % p; } ll ret = 1; while (n > 0) { if (n & 1) { if (p != -1) ret = (ret * x) % p; else ret *= x; } if (p != -1) x = (x * x) % p; else x *= x; n >>= 1; } return ret; } struct myrand{ random_device seed; mt19937 mt; myrand():mt(seed()){} int operator()(int a,int b){//[a,b) uniform_int_distribution<int>dist(a,b-1); return dist(mt); } }; //using namespace atcoder; //------------------------ //------------------------ //------------------------ //------------------------ //------------------------ template<int mod> struct Modint{ int x; Modint():x(0){} Modint(int64_t y):x((y%mod+mod)%mod){} Modint &operator+=(const Modint &p){ if((x+=p.x)>=mod) x -= mod; return *this; } Modint &operator-=(const Modint &p){ if((x+=mod-p.x)>=mod) x -= mod; return *this; } Modint &operator*=(const Modint &p){ x = (1LL * x * p.x) % mod; return *this; } Modint &operator/=(const Modint &p){ *this *= p.inverse(); return *this; } Modint operator-() const { return Modint(-x); } Modint operator+(const Modint &p) const{ return Modint(*this) += p; } Modint operator-(const Modint &p) const{ return Modint(*this) -= p; } Modint operator*(const Modint &p) const{ return Modint(*this) *= p; } Modint operator/(const Modint &p) const{ return Modint(*this) /= p; } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const{return x != p.x;} Modint inverse() const{//非再帰拡張ユークリッド int a = x, b = mod, u = 1, v = 0; while(b>0){ int t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return Modint(u); } Modint pow(int64_t n) const{//繰り返し二乗法 Modint ret(1), mul(x); while(n>0){ if(n&1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os,const Modint &p){ return os << p.x; } }; using modint = Modint<mod>; using modint2= Modint<mod_998244353>; modint2 dp[26][26]; modint2 nx[26][26]; void solve() { int n; cin>>n; string s; cin>>s; if(n==1){ if(s!="?"){ cout<<1<<"\n"; }else{ cout<<26<<"\n"; } return; } memset(dp,0,sizeof(dp)); memset(nx,0,sizeof(nx)); rep(i,26){ rep(j,26){ if(i==j)continue; if(s[0]!='?'&&s[0]-'a'!=i)continue; if(s[1]!='?'&&s[1]-'a'!=j)continue; dp[i][j]=1; } } rep(i,n-2){ rep(x,26){ rep(y,26){ rep(z,26){ if(x==y||y==z||z==x)continue; if(s[i+2]!='?'&&s[i+2]-'a'!=z)continue; nx[y][z]+=dp[x][y]; } } } { rep(x,26)rep(y,26)dp[x][y]=0; } swap(nx,dp); } modint2 ans=0; rep(i,26)rep(j,26)ans+=dp[i][j]; cout<<ans<<"\n"; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); solve(); return 0; }