結果
| 問題 |
No.1435 Mmm......
|
| コンテスト | |
| ユーザー |
sgsw
|
| 提出日時 | 2021-08-15 01:52:37 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 760 ms / 2,000 ms |
| コード長 | 5,009 bytes |
| コンパイル時間 | 11,377 ms |
| コンパイル使用メモリ | 229,452 KB |
| 実行使用メモリ | 96,664 KB |
| 最終ジャッジ日時 | 2024-10-06 07:52:20 |
| 合計ジャッジ時間 | 22,431 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 24 |
ソースコード
package main
/*
library test
*/
import (
"bufio"
"fmt"
"os"
"reflect"
"strconv"
)
var wg = bufio.NewScanner(os.Stdin)
const (
inf = int(1e18)
initialBufSize = int(1e6)
maxBufSize = int(1e6)
)
var buf []byte = make([]byte, initialBufSize)
type monoid struct {
first, second int
max int
}
func (x monoid) Get() interface{} {
return x
}
func (x monoid) Ide() Monoid {
return monoid{first: inf, second: inf, max: -inf}
}
func (x monoid) Op(z Monoid) Monoid {
y := z.(monoid)
minval := x.max
if y.max > minval {
minval = y.max
}
if x.first <= y.first {
if x.second < y.first {
return monoid{x.first, x.second, minval}
} else {
return monoid{x.first, y.first, minval}
}
} else {
if y.second < x.first {
return monoid{y.first, y.second, minval}
} else {
return monoid{y.first, x.first, minval}
}
}
}
func main() {
n := nextInt()
a := make([]int, n)
for i := 0; i < n; i++ {
a[i] = nextInt()
}
seg, _ := Gen(monoid{}, n)
b := make([]Monoid, n)
for i := 0; i < n; i++ {
b[i] = monoid{a[i], inf, a[i]}
}
_ = SliceGen(seg, b)
question := func(m Monoid) bool {
M := m.(monoid)
return M.first+M.second >= M.max
}
ans := 0
for l := 0; l < n; l++ {
r := seg.MaxRight(l, question)
if l == r {
continue
}
ans += r - l - 1
// fmt.Println(l, r)
}
fmt.Printf("%d\n", ans)
}
// greatest common divisor (GCD) via Euclidean algorithm
func GCD(a, b int) int {
for b != 0 {
t := b
b = a % b
a = t
}
return a
}
func init() {
wg.Split(bufio.ScanWords)
wg.Buffer(buf, maxBufSize)
}
func nextInt() int {
wg.Scan()
i, e := strconv.Atoi(wg.Text())
if e != nil {
panic(e)
}
return i
}
/*
Monoid-Structure should be decleared some-where else.
-> op(Monoid,Monoid)Monoid & ide()Monoid is required.
*/
type Monoid interface {
Get() interface{}
Op(Monoid) Monoid
Ide() Monoid
}
type SegTree struct {
monoid_type Monoid
op func(Monoid) Monoid /* op */
e func() Monoid /*identity*/
d []Monoid
_d []Monoid
n int /* size*/
log int
size int
}
func Gen(monoid Monoid, n int) (SegTree, bool) {
seg := SegTree{monoid_type: monoid, op: monoid.Op, e: monoid.Ide, d: []Monoid{}, _d: []Monoid{}, n: 0, log: 0, size: 0}
collect := true
switch n > 0 {
case true:
seg.d = make([]Monoid, n)
for i := range seg.d {
seg.d[i] = seg.e()
}
default:
collect = false
return seg, collect
}
seg.n = len(seg.d)
for ord := 0; (1 << ord) < seg.n; {
ord++
seg.log = ord
}
seg.size = 1 << seg.log
seg._d = make([]Monoid, 2*seg.size)
for i := range seg._d {
seg._d[i] = seg.e()
}
for i := 0; i < seg.n; i++ {
seg._d[seg.size+i] = seg.d[i]
}
for i := seg.size - 1; i > 0; i-- {
seg._update(i)
}
return seg, collect
}
func SliceGen(seg SegTree, array []Monoid) bool {
ok := true
if len(array) != seg.n {
ok = false
return ok
}
for _, v := range array {
if reflect.TypeOf(seg.monoid_type) != reflect.TypeOf(v) {
ok = false
return ok
}
}
for i, v := range array {
seg.Set(i, v)
}
for i := seg.size - 1; i > 0; i-- {
seg._update(i)
}
return ok
}
func (seg SegTree) _update(k int) {
seg._d[k] = seg._d[2*k].Op(seg._d[2*k+1])
}
func (seg SegTree) Set(p int, x Monoid) {
//a[p] -> x
p += seg.size
seg._d[p] = x
for i := 1; i <= seg.log; i++ {
seg._update(p >> i)
}
}
func (seg SegTree) Get(p int) Monoid {
// a[p]
return seg._d[p+seg.size]
}
func (seg SegTree) OverWrite(p int, f func(Monoid) Monoid) {
p += seg.size
m := seg._d[p]
seg._d[p] = f(m)
for i := 1; i <= seg.log; i++ {
seg._update(p >> i)
}
}
func (seg SegTree) Prod(l, r int) Monoid {
//op(a[l..r))
sml := seg.e()
smr := seg.e()
l += seg.size
r += seg.size
for l < r {
if l&1 == 1 {
sml = sml.Op(seg._d[l])
l++
}
if r&1 == 1 {
r--
smr = seg._d[r].Op(smr)
}
l >>= 1
r >>= 1
}
return sml.Op(smr)
}
func (seg SegTree) AllProd() Monoid {
return seg._d[1]
}
func (seg SegTree) MaxRight(left int, f func(Monoid) bool) int {
if left == seg.n {
return seg.n
}
left += seg.size
sm := seg.e()
first := true
for first || (left&(-left)) != left {
first = false
for left&1 == 0 {
left >>= 1
}
if !f(sm.Op(seg._d[left])) {
for left < seg.size {
left <<= 1
if f(sm.Op(seg._d[left])) {
sm = sm.Op(seg._d[left])
left++
}
}
return left - seg.size
}
sm = sm.Op(seg._d[left])
left++
}
return seg.n
}
func (seg SegTree) MinLeft(right int, f func(Monoid) bool) int {
if right == 0 {
return 0
}
right += seg.size
sm := seg.e()
first := true
for first || (right&(-right)) != right {
first = false
right--
for right > 1 && right&1 == 0 {
right >>= 1
}
if !f(sm.Op(seg._d[right])) {
for right < seg.size {
right = right*2 + 1
if f(sm.Op(seg._d[right])) {
sm = sm.Op((seg._d[right]))
right--
}
}
return right + 1 - seg.size
}
sm = sm.Op(seg._d[right])
}
return 0
}
sgsw