結果
| 問題 |
No.665 Bernoulli Bernoulli
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-08-18 02:50:01 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 98 ms / 2,000 ms |
| コード長 | 3,081 bytes |
| コンパイル時間 | 178 ms |
| コンパイル使用メモリ | 13,184 KB |
| 実行使用メモリ | 14,080 KB |
| 最終ジャッジ日時 | 2024-10-11 02:57:38 |
| 合計ジャッジ時間 | 2,719 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 15 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
N,K=map(int,readline().split())
mod=10**9+7
lst=[0]
for i in range(1,K+2):
lst.append((lst[-1]+pow(i,K,mod))%mod)
if N<=K+1:
ans=lst[N]
else:
lst_l=[1]
for i in range(1,K+3):
lst_l.append(lst_l[-1]*(N-K-2+i)%mod)
lst_r=[None]*(K+3)
lst_r[K+2]=1
for i in range(K+1,-1,-1):
lst_r[i]=lst_r[i+1]*(N-K-1+i)%mod
MD=MOD(mod)
MD.Build_Fact(K+1)
ans=0
for i in range(K+2):
ans+=lst[i]*lst_l[K+1-i]*lst_r[K+2-i]*MD.Fact_Inve(K+1-i)*MD.Fact_Inve(i)*(1 if (K+1-i)%2==0 else -1)
ans%=mod
print(ans)
vwxyz