結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー | vwxyz |
提出日時 | 2021-08-18 03:41:22 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 96 ms / 2,000 ms |
コード長 | 2,997 bytes |
コンパイル時間 | 91 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 14,080 KB |
最終ジャッジ日時 | 2024-10-11 03:43:06 |
合計ジャッジ時間 | 2,601 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
12,032 KB |
testcase_01 | AC | 41 ms
12,032 KB |
testcase_02 | AC | 91 ms
13,696 KB |
testcase_03 | AC | 93 ms
13,824 KB |
testcase_04 | AC | 94 ms
13,952 KB |
testcase_05 | AC | 93 ms
13,696 KB |
testcase_06 | AC | 91 ms
13,824 KB |
testcase_07 | AC | 93 ms
13,696 KB |
testcase_08 | AC | 91 ms
13,824 KB |
testcase_09 | AC | 94 ms
13,952 KB |
testcase_10 | AC | 91 ms
13,824 KB |
testcase_11 | AC | 96 ms
13,696 KB |
testcase_12 | AC | 93 ms
14,080 KB |
testcase_13 | AC | 95 ms
13,824 KB |
testcase_14 | AC | 96 ms
13,952 KB |
testcase_15 | AC | 88 ms
13,696 KB |
testcase_16 | AC | 91 ms
13,952 KB |
testcase_17 | AC | 88 ms
13,696 KB |
testcase_18 | AC | 91 ms
13,824 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inve(self,N): if self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu N,K=map(int,readline().split()) mod=10**9+7 lst=[0] for i in range(1,K+2): lst.append((lst[-1]+pow(i,K,mod))%mod) lst_l=[1] for i in range(1,K+3): lst_l.append(lst_l[-1]*(N-K-2+i)%mod) lst_r=[None]*(K+3) lst_r[K+2]=1 for i in range(K+1,-1,-1): lst_r[i]=lst_r[i+1]*(N-K-1+i)%mod MD=MOD(mod) MD.Build_Fact(K+1) ans=0 for i in range(K+2): ans+=lst[i]*lst_l[K+1-i]*lst_r[K+2-i]*MD.Fact_Inve(K+1-i)*MD.Fact_Inve(i)*(1 if (K+1-i)%2==0 else -1) ans%=mod print(ans)