結果
| 問題 |
No.665 Bernoulli Bernoulli
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-08-18 05:31:57 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 85 ms / 2,000 ms |
| コード長 | 4,499 bytes |
| コンパイル時間 | 135 ms |
| コンパイル使用メモリ | 13,056 KB |
| 実行使用メモリ | 14,464 KB |
| 最終ジャッジ日時 | 2024-10-11 12:44:53 |
| 合計ジャッジ時間 | 2,826 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 15 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import degrees, gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
class Lagrange_Interpolation:
def __init__(self,X=False,Y=False,x0=None,xd=None,mod=0):
self.degree=len(Y)-1
self.mod=mod
assert self.degree<self.mod
if x0!=None and xd!=None:
assert xd>0
self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)]
fact_inve=1
for i in range(1,self.degree+1):
fact_inve*=i*xd
fact_inve%=self.mod
fact_inve=MOD(self.mod).Pow(fact_inve,-1)
self.coefficient=[y for y in Y]
for i in range(self.degree-1,-1,-2):
self.coefficient[i]*=-1
for i in range(self.degree,-1,-1):
self.coefficient[i]*=fact_inve
self.coefficient[i]%=self.mod
self.coefficient[self.degree-i]*=fact_inve
self.coefficient[self.degree-i]%=self.mod
fact_inve*=i*xd
fact_inve%=self.mod
else:
self.X=X
assert len(self.X)==self.degree+1
self.coefficient=[y for y in Y]
for i in range(self.degree+1):
for j in range(self.degree+1):
if i==j:
continue
self.coefficient[i]*=X[i]-X[j]
self.coefficient%=self.mod
def __getitem__(self,N):
N%=self.mod
XX=[N-x for x in self.X]
XX_left=[1]*(self.degree+2)
for i in range(1,self.degree+2):
XX_left[i]=XX_left[i-1]*XX[i-1]%self.mod
XX_right=[1]*(self.degree+2)
for i in range(self.degree,-1,-1):
XX_right[i]=XX_right[i+1]*XX[i]%self.mod
return sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1))%self.mod
N,K=map(int,readline().split())
mod=10**9+7
Y=[0]
for i in range(1,K+2):
Y.append((Y[-1]+pow(i,K,mod))%mod)
LI=Lagrange_Interpolation(Y=Y,x0=0,xd=1,mod=mod)
ans=LI[N]
print(ans)
vwxyz