結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー | vwxyz |
提出日時 | 2021-08-18 05:31:57 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 85 ms / 2,000 ms |
コード長 | 4,499 bytes |
コンパイル時間 | 135 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 14,464 KB |
最終ジャッジ日時 | 2024-10-11 12:44:53 |
合計ジャッジ時間 | 2,826 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
12,160 KB |
testcase_01 | AC | 41 ms
12,288 KB |
testcase_02 | AC | 79 ms
14,208 KB |
testcase_03 | AC | 81 ms
14,464 KB |
testcase_04 | AC | 83 ms
14,336 KB |
testcase_05 | AC | 79 ms
14,336 KB |
testcase_06 | AC | 79 ms
14,336 KB |
testcase_07 | AC | 80 ms
14,208 KB |
testcase_08 | AC | 77 ms
14,208 KB |
testcase_09 | AC | 82 ms
14,336 KB |
testcase_10 | AC | 79 ms
14,208 KB |
testcase_11 | AC | 85 ms
14,464 KB |
testcase_12 | AC | 81 ms
14,464 KB |
testcase_13 | AC | 84 ms
14,464 KB |
testcase_14 | AC | 84 ms
14,464 KB |
testcase_15 | AC | 77 ms
14,208 KB |
testcase_16 | AC | 80 ms
14,336 KB |
testcase_17 | AC | 77 ms
14,208 KB |
testcase_18 | AC | 80 ms
14,336 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import degrees, gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inve(self,N): if self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu class Lagrange_Interpolation: def __init__(self,X=False,Y=False,x0=None,xd=None,mod=0): self.degree=len(Y)-1 self.mod=mod assert self.degree<self.mod if x0!=None and xd!=None: assert xd>0 self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)] fact_inve=1 for i in range(1,self.degree+1): fact_inve*=i*xd fact_inve%=self.mod fact_inve=MOD(self.mod).Pow(fact_inve,-1) self.coefficient=[y for y in Y] for i in range(self.degree-1,-1,-2): self.coefficient[i]*=-1 for i in range(self.degree,-1,-1): self.coefficient[i]*=fact_inve self.coefficient[i]%=self.mod self.coefficient[self.degree-i]*=fact_inve self.coefficient[self.degree-i]%=self.mod fact_inve*=i*xd fact_inve%=self.mod else: self.X=X assert len(self.X)==self.degree+1 self.coefficient=[y for y in Y] for i in range(self.degree+1): for j in range(self.degree+1): if i==j: continue self.coefficient[i]*=X[i]-X[j] self.coefficient%=self.mod def __getitem__(self,N): N%=self.mod XX=[N-x for x in self.X] XX_left=[1]*(self.degree+2) for i in range(1,self.degree+2): XX_left[i]=XX_left[i-1]*XX[i-1]%self.mod XX_right=[1]*(self.degree+2) for i in range(self.degree,-1,-1): XX_right[i]=XX_right[i+1]*XX[i]%self.mod return sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1))%self.mod N,K=map(int,readline().split()) mod=10**9+7 Y=[0] for i in range(1,K+2): Y.append((Y[-1]+pow(i,K,mod))%mod) LI=Lagrange_Interpolation(Y=Y,x0=0,xd=1,mod=mod) ans=LI[N] print(ans)