結果
問題 | No.1621 Sequence Inversions |
ユーザー | koba-e964 |
提出日時 | 2021-08-18 12:54:32 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 411 ms / 3,000 ms |
コード長 | 6,327 bytes |
コンパイル時間 | 13,720 ms |
コンパイル使用メモリ | 377,952 KB |
実行使用メモリ | 396,928 KB |
最終ジャッジ日時 | 2024-10-11 12:51:34 |
合計ジャッジ時間 | 21,016 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 5 ms
6,656 KB |
testcase_04 | AC | 274 ms
310,528 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 7 ms
8,576 KB |
testcase_08 | AC | 380 ms
396,800 KB |
testcase_09 | AC | 355 ms
396,800 KB |
testcase_10 | AC | 357 ms
396,800 KB |
testcase_11 | AC | 377 ms
396,672 KB |
testcase_12 | AC | 395 ms
396,800 KB |
testcase_13 | AC | 402 ms
396,928 KB |
testcase_14 | AC | 406 ms
396,800 KB |
testcase_15 | AC | 408 ms
396,800 KB |
testcase_16 | AC | 292 ms
285,184 KB |
testcase_17 | AC | 394 ms
381,440 KB |
testcase_18 | AC | 277 ms
273,024 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 83 ms
82,048 KB |
testcase_21 | AC | 411 ms
396,800 KB |
testcase_22 | AC | 409 ms
396,800 KB |
testcase_23 | AC | 406 ms
396,800 KB |
testcase_24 | AC | 1 ms
6,820 KB |
testcase_25 | AC | 1 ms
6,816 KB |
testcase_26 | AC | 1 ms
6,820 KB |
testcase_27 | AC | 1 ms
6,816 KB |
testcase_28 | AC | 1 ms
6,820 KB |
ソースコード
use std::cmp::*; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // Tags: partition-number, dp, inversions fn main() { input! { n: usize, k: usize, a: [i64; n], } let mut coo = a.clone(); coo.sort(); coo.dedup(); let m = coo.len(); let mut f = vec![0; m]; for a in a { f[coo.binary_search(&a).unwrap()] += 1; } let lim = n * (n - 1) / 2 + 1; let mut help = vec![vec![vec![MInt::new(0); lim]; n + 1]; n + 1]; for x in 0..n + 1 { help[x][0][0] += 1; for y in 1..n - x + 1 { for i in 0..x * y + 1 { let mut me = help[x][y - 1][i]; if x >= 1 && i >= y { me += help[x - 1][y][i - y]; } help[x][y][i] = me; } } } let mut dp = vec![MInt::new(0); lim]; dp[0] = 1.into(); let mut x = 0; for y in f { let mut tmp = vec![MInt::new(0); x * y + 1]; for i in 0..x * y + 1 { tmp[i] = help[x][y][i]; } assert_eq!(tmp[0], 1.into()); for j in (0..lim).rev() { for u in 1..min(j + 1, tmp.len()) { dp[j] = dp[j] + dp[j - u] * tmp[u]; } } x += y; } println!("{}", dp[k]); }