結果
問題 | No.1655 123 Swaps |
ユーザー | NyaanNyaan |
提出日時 | 2021-08-20 23:35:30 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,444 ms / 2,000 ms |
コード長 | 51,782 bytes |
コンパイル時間 | 3,261 ms |
コンパイル使用メモリ | 272,840 KB |
実行使用メモリ | 31,896 KB |
最終ジャッジ日時 | 2024-10-14 07:33:44 |
合計ジャッジ時間 | 30,271 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 3 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 3 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 1,384 ms
29,992 KB |
testcase_16 | AC | 1,412 ms
30,032 KB |
testcase_17 | AC | 1,424 ms
30,268 KB |
testcase_18 | AC | 1,425 ms
31,412 KB |
testcase_19 | AC | 1,433 ms
31,552 KB |
testcase_20 | AC | 1,414 ms
30,372 KB |
testcase_21 | AC | 1,425 ms
29,948 KB |
testcase_22 | AC | 1,434 ms
31,896 KB |
testcase_23 | AC | 1,439 ms
30,816 KB |
testcase_24 | AC | 1,442 ms
30,236 KB |
testcase_25 | AC | 1,444 ms
30,800 KB |
testcase_26 | AC | 1,361 ms
28,612 KB |
testcase_27 | AC | 797 ms
18,616 KB |
testcase_28 | AC | 668 ms
17,012 KB |
testcase_29 | AC | 1,231 ms
27,348 KB |
testcase_30 | AC | 1,189 ms
27,308 KB |
testcase_31 | AC | 669 ms
16,868 KB |
testcase_32 | AC | 2 ms
6,816 KB |
testcase_33 | AC | 2 ms
6,816 KB |
testcase_34 | AC | 2 ms
6,816 KB |
testcase_35 | AC | 9 ms
6,816 KB |
testcase_36 | AC | 676 ms
16,120 KB |
testcase_37 | AC | 678 ms
16,588 KB |
testcase_38 | AC | 686 ms
17,316 KB |
testcase_39 | AC | 682 ms
16,804 KB |
testcase_40 | AC | 1,404 ms
30,420 KB |
testcase_41 | AC | 2 ms
6,816 KB |
testcase_42 | AC | 2 ms
6,816 KB |
testcase_43 | AC | 2 ms
6,820 KB |
testcase_44 | AC | 2 ms
6,816 KB |
ソースコード
/** * date : 2021-08-20 23:35:21 */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; T &x() { return first; } const T &x() const { return first; } U &y() { return second; } const U &y() const { return second; } P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template <typename T, class... U, char sep = ' '> void outr(const T &t, const U &... u) { cout << t; outr(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug namespace DebugImpl { template <typename U, typename = void> struct is_specialize : false_type {}; template <typename U> struct is_specialize< U, typename conditional<false, typename U::iterator, void>::type> : true_type {}; template <typename U> struct is_specialize< U, typename conditional<false, decltype(U::first), void>::type> : true_type {}; template <typename U> struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type { }; void dump(const char& t) { cerr << t; } void dump(const string& t) { cerr << t; } void dump(const bool& t) { cerr << (t ? "true" : "false"); } template <typename U, enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr> void dump(const U& t) { cerr << t; } template <typename T> void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) { string res; if (t == Nyaan::inf) res = "inf"; if constexpr (is_signed<T>::value) { if (t == -Nyaan::inf) res = "-inf"; } if constexpr (sizeof(T) == 8) { if (t == Nyaan::infLL) res = "inf"; if constexpr (is_signed<T>::value) { if (t == -Nyaan::infLL) res = "-inf"; } } if (res.empty()) res = to_string(t); cerr << res; } template <typename T, typename U> void dump(const pair<T, U>&); template <typename T> void dump(const pair<T*, int>&); template <typename T> void dump(const T& t, enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) { cerr << "[ "; for (auto it = t.begin(); it != t.end();) { dump(*it); cerr << (++it == t.end() ? "" : ", "); } cerr << " ]"; } template <typename T, typename U> void dump(const pair<T, U>& t) { cerr << "( "; dump(t.first); cerr << ", "; dump(t.second); cerr << " )"; } template <typename T> void dump(const pair<T*, int>& t) { cerr << "[ "; for (int i = 0; i < t.second; i++) { dump(t.first[i]); cerr << (i == t.second - 1 ? "" : ", "); } cerr << " ]"; } void trace() { cerr << endl; } template <typename Head, typename... Tail> void trace(Head&& head, Tail&&... tail) { cerr << " "; dump(head); if (sizeof...(tail) != 0) cerr << ","; trace(forward<Tail>(tail)...); } } // namespace DebugImpl #ifdef NyaanDebug #define trc(...) \ do { \ cerr << "## " << #__VA_ARGS__ << " = "; \ DebugImpl::trace(__VA_ARGS__); \ } while (0) #else #define trc(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // __attribute__((target("sse4.2"))) inline __m128i my128_mullo_epu32( const __m128i &a, const __m128i &b) { return _mm_mullo_epi32(a, b); } __attribute__((target("sse4.2"))) inline __m128i my128_mulhi_epu32( const __m128i &a, const __m128i &b) { __m128i a13 = _mm_shuffle_epi32(a, 0xF5); __m128i b13 = _mm_shuffle_epi32(b, 0xF5); __m128i prod02 = _mm_mul_epu32(a, b); __m128i prod13 = _mm_mul_epu32(a13, b13); __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13), _mm_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("sse4.2"))) inline __m128i montgomery_mul_128( const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) { return _mm_sub_epi32( _mm_add_epi32(my128_mulhi_epu32(a, b), m1), my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1)); } __attribute__((target("sse4.2"))) inline __m128i montgomery_add_128( const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("sse4.2"))) inline __m128i montgomery_sub_128( const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(a, b); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) inline __m256i my256_mullo_epu32( const __m256i &a, const __m256i &b) { return _mm256_mullo_epi32(a, b); } __attribute__((target("avx2"))) inline __m256i my256_mulhi_epu32( const __m256i &a, const __m256i &b) { __m256i a13 = _mm256_shuffle_epi32(a, 0xF5); __m256i b13 = _mm256_shuffle_epi32(b, 0xF5); __m256i prod02 = _mm256_mul_epu32(a, b); __m256i prod13 = _mm256_mul_epu32(a13, b13); __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13), _mm256_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("avx2"))) inline __m256i montgomery_mul_256( const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) { return _mm256_sub_epi32( _mm256_add_epi32(my256_mulhi_epu32(a, b), m1), my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1)); } __attribute__((target("avx2"))) inline __m256i montgomery_add_256( const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) inline __m256i montgomery_sub_256( const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(a, b); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } namespace ntt_inner { using u64 = uint64_t; constexpr uint32_t get_pr(uint32_t mod) { if (mod == 2) return 1; u64 ds[32] = {}; int idx = 0; u64 m = mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = pr, b = (mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % mod; a = a * a % mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++pr; } return pr; } constexpr int SZ_FFT_BUF = 1 << 23; uint32_t _buf1[SZ_FFT_BUF] __attribute__((aligned(64))); uint32_t _buf2[SZ_FFT_BUF] __attribute__((aligned(64))); } // namespace ntt_inner template <typename mint> struct NTT { static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = ntt_inner::get_pr(mint::get_mod()); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; mint *buf1, *buf2; constexpr NTT() { setwy(level); union raw_cast { mint dat; uint32_t _; }; buf1 = &(((raw_cast *)(ntt_inner::_buf1))->dat); buf2 = &(((raw_cast *)(ntt_inner::_buf2))->dat); } constexpr void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[0] = dy[0] = w[1] * w[1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } __attribute__((target("avx2"))) void ntt(mint *a, int n) { int k = n ? __builtin_ctz(n) : 0; if (k == 0) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); if (v < 8) { for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for (; j0 < v; j0 += 8, j1 += 8) { __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0, T1, m2, m0); __m256i najv = montgomery_sub_256(T0, T1, m2, m0); _mm256_storeu_si256((__m256i *)(a + j0), naj); _mm256_storeu_si256((__m256i *)(a + j1), najv); } } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { if (v == 1) { mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { ww = xx * xx, wx = ww * xx; mint t0 = a[jh + 0], t1 = a[jh + 1] * xx; mint t2 = a[jh + 2] * ww, t3 = a[jh + 3] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[jh + 0] = t0p2 + t1p3, a[jh + 1] = t0p2 - t1p3; a[jh + 2] = t0m2 + t1m3, a[jh + 3] = t0m2 - t1m3; xx *= dw[__builtin_ctz((jh += 4))]; } } else if (v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P2 = montgomery_add_128(T0, T2, m2, m0); const __m128i T1P3 = montgomery_add_128(T1, T3, m2, m0); const __m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0)); } } else { ww = xx * xx, wx = ww * xx; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i WX = _mm_set1_epi32(wx.a); const __m128i XX = _mm_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i MT1 = montgomery_mul_128(T1, XX, r, m1); const __m128i MT2 = montgomery_mul_128(T2, WW, r, m1); const __m128i MT3 = montgomery_mul_128(T3, WX, r, m1); const __m128i T0P2 = montgomery_add_128(T0, MT2, m2, m0); const __m128i T1P3 = montgomery_add_128(MT1, MT3, m2, m0); const __m128i T0M2 = montgomery_sub_128(T0, MT2, m2, m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(MT1, MT3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P2 = montgomery_add_256(T0, T2, m2, m0); const __m256i T1P3 = montgomery_add_256(T1, T3, m2, m0); const __m256i T0M2 = montgomery_sub_256(T0, T2, m2, m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(T1, T3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0)); } } else { ww = xx * xx, wx = ww * xx; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i WX = _mm256_set1_epi32(wx.a); const __m256i XX = _mm256_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i MT1 = montgomery_mul_256(T1, XX, r, m1); const __m256i MT2 = montgomery_mul_256(T2, WW, r, m1); const __m256i MT3 = montgomery_mul_256(T3, WX, r, m1); const __m256i T0P2 = montgomery_add_256(T0, MT2, m2, m0); const __m256i T1P3 = montgomery_add_256(MT1, MT3, m2, m0); const __m256i T0M2 = montgomery_sub_256(T0, MT2, m2, m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(MT1, MT3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } u <<= 2; v >>= 2; } } __attribute__((target("avx2"))) void intt(mint *a, int n, int normalize = true) { int k = n ? __builtin_ctz(n) : 0; if (k == 0) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; if (normalize) { a[0] *= mint(2).inverse(); a[1] *= mint(2).inverse(); } return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { if (v == 1) { mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { ww = xx * xx, yy = xx * imag; mint t0 = a[jh + 0], t1 = a[jh + 1]; mint t2 = a[jh + 2], t3 = a[jh + 3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[jh + 0] = t0p1 + t2p3, a[jh + 2] = (t0p1 - t2p3) * ww; a[jh + 1] = t0m1 + t2m3, a[jh + 3] = (t0m1 - t2m3) * ww; xx *= dy[__builtin_ctz(jh += 4)]; } } else if (v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0); const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0); const __m128i T0M1 = montgomery_sub_128(T0, T1, m2, m0); const __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2, T3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_sub_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M1, T2M3, m2, m0)); } } else { ww = xx * xx, yy = xx * imag; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i XX = _mm_set1_epi32(xx.a); const __m128i YY = _mm_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0); const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0); const __m128i T0M1 = montgomery_mul_128( montgomery_sub_128(T0, T1, m2, m0), XX, r, m1); __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2, T3, m2, m0), YY, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128( (__m128i *)(a + j2), montgomery_mul_128(montgomery_sub_128(T0P1, T2P3, m2, m0), WW, r, m1)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0)); _mm_storeu_si128( (__m128i *)(a + j3), montgomery_mul_128(montgomery_sub_128(T0M1, T2M3, m2, m0), WW, r, m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0); const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0); const __m256i T0M1 = montgomery_sub_256(T0, T1, m2, m0); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2, T3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_sub_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M1, T2M3, m2, m0)); } } else { ww = xx * xx, yy = xx * imag; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i XX = _mm256_set1_epi32(xx.a); const __m256i YY = _mm256_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0); const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0); const __m256i T0M1 = montgomery_mul_256( montgomery_sub_256(T0, T1, m2, m0), XX, r, m1); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2, T3, m2, m0), YY, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256( (__m256i *)(a + j2), montgomery_mul_256(montgomery_sub_256(T0P1, T2P3, m2, m0), WW, r, m1)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0)); _mm256_storeu_si256( (__m256i *)(a + j3), montgomery_mul_256(montgomery_sub_256(T0M1, T2M3, m2, m0), WW, r, m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } u >>= 4; v <<= 2; } if (k & 1) { v = 1 << (k - 1); if (v < 8) { for (int j = 0; j < v; ++j) { mint ajv = a[j] - a[j + v]; a[j] += a[j + v]; a[j + v] = ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for (; j0 < v; j0 += 8, j1 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0, T1, m2, m0); __m256i najv = montgomery_sub_256(T0, T1, m2, m0); _mm256_storeu_si256((__m256i *)(a + j0), naj); _mm256_storeu_si256((__m256i *)(a + j1), najv); } } } if (normalize) { mint invn = mint(n).inverse(); for (int i = 0; i < n; i++) a[i] *= invn; } } __attribute__((target("avx2"))) void inplace_multiply( int l1, int l2, int zero_padding = true) { int l = l1 + l2 - 1; int M = 4; while (M < l) M <<= 1; if (zero_padding) { for (int i = l1; i < M; i++) ntt_inner::_buf1[i] = 0; for (int i = l2; i < M; i++) ntt_inner::_buf2[i] = 0; } const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i N2 = _mm256_set1_epi32(mint::n2); for (int i = 0; i < l1; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i)); __m256i b = montgomery_mul_256(a, N2, r, m1); _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), b); } for (int i = 0; i < l2; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i)); __m256i b = montgomery_mul_256(a, N2, r, m1); _mm256_storeu_si256((__m256i *)(ntt_inner::_buf2 + i), b); } ntt(buf1, M); ntt(buf2, M); for (int i = 0; i < M; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i)); __m256i b = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf2 + i)); __m256i c = montgomery_mul_256(a, b, r, m1); _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), c); } intt(buf1, M, false); const __m256i INVM = _mm256_set1_epi32((mint(M).inverse()).a); for (int i = 0; i < l; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(ntt_inner::_buf1 + i)); __m256i b = montgomery_mul_256(a, INVM, r, m1); __m256i c = my256_mulhi_epu32(my256_mullo_epu32(b, r), m1); __m256i d = _mm256_and_si256(_mm256_cmpgt_epi32(c, m0), m1); __m256i e = _mm256_sub_epi32(d, c); _mm256_storeu_si256((__m256i *)(ntt_inner::_buf1 + i), e); } } void ntt(vector<mint> &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; ntt(buf1, M); for (int i = 0; i < M; i++) a[i].a = buf1[i].a; } void intt(vector<mint> &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1, M, true); for (int i = 0; i < M; i++) a[i].a = buf1[i].a; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { if (a.size() == 0 && b.size() == 0) return vector<mint>{}; int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40) { vector<mint> s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } assert(l <= ntt_inner::SZ_FFT_BUF); int M = 4; while (M < l) M <<= 1; for (int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a; for (int i = (int)a.size(); i < M; ++i) buf1[i].a = 0; for (int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a; for (int i = (int)b.size(); i < M; ++i) buf2[i].a = 0; ntt(buf1, M); ntt(buf2, M); for (int i = 0; i < M; ++i) buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a); intt(buf1, M, false); vector<mint> s(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] = buf1[i] * invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1, M); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) buf1[i] *= r, r *= zeta; ntt(buf1, M); a.resize(2 * M); for (int i = 0; i < M; i++) a[M + i].a = buf1[i].a; } }; template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { if (i * k > deg) return FPS(deg, mint(0)); mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k)); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ template <typename mint> void FormalPowerSeries<mint>::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT<mint>; } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=( const FormalPowerSeries<mint>& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries<mint>(ret.begin(), ret.end()); } template <typename mint> void FormalPowerSeries<mint>::ntt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this); } template <typename mint> void FormalPowerSeries<mint>::intt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->intt(*this); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { set_fft(); return static_cast<NTT<mint>*>(ntt_ptr)->pr; } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries<mint> f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { using fps = FormalPowerSeries<mint>; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min<int>(this->size(), m)); x.resize(m); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } /** * @brief NTT mod用FPSライブラリ * @docs docs/fps/ntt-friendly-fps.md */ template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template <typename T> struct Binomial { vector<T> f, g, h; Binomial(int MAX = 0) : f(1, T(1)), g(1, T(1)), h(1, T(1)) { while (MAX >= (int)f.size()) extend(); } void extend() { int n = f.size(); int m = n * 2; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template <typename I> T multinomial(const vector<I>& r) { static_assert(is_integral<I>::value == true); int n = 0; for (auto& x : r) { if(x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template <typename I> T operator()(const vector<I>& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; // #include "fps/arbitrary-fps.hpp" // using namespace Nyaan; using mint = LazyMontgomeryModInt<924844033>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; Binomial<mint> C; using fps = FormalPowerSeries<mint>; using namespace Nyaan; void Nyaan::solve() { inl(a, b, c); ll N = a + b + c; if (N % 2 == 1) die(0); ll M = N / 2; ll sm = a * 1 + b * 2 + c * 3; ll s = sm % 3 == 0 ? 0 : sm % 3 == 2 ? 1 : 2; mint W = 257032196; // mint U = 257032197; mint ans = 0; trc(M, sm, s); // sum [y^A x^B] (W^(-i) y + W^i x + 1)^M (y + x + 1)^M // こんなの計算出来ちゃ、ダメだろ { int i = 0; mint wi = W.pow(i); fps f(M + 1); fps g(M + 1); mint base = 1; rep(j, M + 1) { mint binom = C(M, j); f[j] = base * binom; g[j] = binom; base *= wi; } mint cur = 0; rep(j, M + 1) { int k = a + b - j; if (0 <= k and k <= M) { cur += f[j] * g[k]; } } cur *= wi.inverse().pow(s); cur *= C(a + b, b); trc(cur); ans += cur; } rep1(i, 2) { mint wi = W.pow(i); fps f(M + 1); fps g(M + 1); mint base = 1; rep(j, M + 1) { mint binom = C(M, j); f[j] = binom; g[j] = binom; base *= wi; } mint cur = 0; fps h(a + b + 1); rep(j, M + 1) { int k = a + b - j; if (0 <= k and k <= M) { h[j] = f[j] * g[k]; } } mint w2 = wi * wi; // h=fps(a+b+1,1); trc(h); // int D = a + b; // each j [x^b] sum h_j (wi x + w2)^j (x+1)^{D-j} auto dc = [&](auto rc, int l, int r) -> fps { if (l + 1 == r) { return fps(1, h[l]); } int m = (l + r) >> 1; auto L = rc(rc, l, m); auto R = rc(rc, m, r); fps LL(m - l + 1); mint w2ml = w2.pow(m - l); mint coe = wi/w2; rep(j, m - l + 1) { LL[j] = C(m - l, j) * w2ml; w2ml *= coe; } fps RR(r - m + 1); rep(j, r - m + 1) { RR[j] = C(r - m, j); } trc(l, r, L, R, LL, RR); auto res = LL * R + RR * L; trc(res); return res; }; auto fff = dc(dc, 0, a + b + 1); trc(fff); cur = fff[b]; cur *= wi.pow(s); trc(cur); ans += cur; } out(ans / 3); }